欢迎来到天天文库
浏览记录
ID:48048734
大小:134.00 KB
页数:10页
时间:2020-01-13
《§2.3一元线性回归模型的统计检验1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.3一元线性回归模型的统计检验一、拟合优度检验二、变量的显著性检验三、参数的置信区间回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。主要包括拟合优度检验、变量的显著性检验及参数的区间估计。一、拟合优度检验拟合优度检验:对样本回归直线与样
2、本观测值之间拟合程度的检验。度量拟合优度的指标:判定系数(可决系数)R2问题:采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?1、总离差平方和的分解已知由一组样本观测值(Xi,Yi),i=1,2…,n得到如下样本回归直线如果Yi=Ŷi即实际观测值落在样本回归“线”上,则拟合最好。可认为,“离差”全部来自回归线,而与“残差”无关。对于所有样本点,则需考虑这些点与样本均值离差的平方和,可以证明:记总体平方和(TotalSumofSquares)回归平方和(Explain
3、edSumofSquares)残差平方和(ResidualSumofSquares)TSS=ESS+RSSY的观测值围绕其均值的总离差(totalvariation)可分解为两部分:一部分来自回归线(ESS),另一部分则来自随机势力(RSS)。在给定样本中,TSS不变,如果实际观测点离样本回归线越近,则ESS在TSS中占的比重越大,因此拟合优度:回归平方和ESS/Y的总离差TSS2、可决系数R2统计量称R2为(样本)可决系数/判定系数(coefficientofdetermination)。可决系数的取值
4、范围:[0,1]R2越接近1,说明实际观测点离样本线越近,拟合优度越高。二、变量的显著性检验回归分析是要判断解释变量X是否是被解释变量Y的一个显著性的影响因素。在一元线性模型中,就是要判断X是否对Y具有显著的线性性影响。这就需要进行变量的显著性检验。变量的显著性检验所应用的方法是数理统计学中的假设检验。计量经计学中,主要是针对变量的参数真值是否为零来进行显著性检验的。在例2.1.1的收入-消费支出例中,注:可决系数是一个非负的统计量。它也是随着抽样的不同而不同。为此,对可决系数的统计可靠性也应进行检验,这
5、将在第3章中进行。
此文档下载收益归作者所有