欢迎来到天天文库
浏览记录
ID:48029154
大小:1.39 MB
页数:38页
时间:2020-01-11
《平面向量的概念+加减法运算.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2.1向量的基本概念一、向量的定义既有大小,又有方向的量叫做向量。二、向量的表示方法有向线段(起点、)1几何表示法:a,b2字母表示法:ABB(终点)A(起点)方向、长度单位向量---长度(模)等于1个单位长度的向量叫作单位向量。2.两个特殊向量:问:在平面上把所有单位向量的起点平移到同一点P,那么它们的终点的集合组成什么图形?三、向量的有关概念零向量---长度(模)为0的向量叫做零向量,记作0。1.向量的长度(模):向量AB的大小也就是向量的长度(模)。
2、a
3、
4、AB
5、或记作P1.温度含零上和零下温度,所以温度是向量()判断题2.向量的
6、模是一个正实数。( )3.若
7、a
8、>
9、b
10、,则a>b注:向量不能比较大小长度相等且方向相同的两个向量表示相等向量,但是两个向量之间只有相等关系,没有大小之分,“对于向量a,b,a>b,或a<b”这种说法是错误的.3.向量间的关系平行向量又叫做共线向量各向量的终点与直线l之间有什么关系?如:abc(1)平行向量:方向相同或相反的非零向量叫做平行向量。记作a∥b∥c规定:0与任一向量平行。问:把一组平行于直线l的向量的起点平移到直线l上的一点O,这时它们是不是平行向量?ol.COC=cAOA=aOB=bB向量相等向量平行平行向量一定是相等向量
11、吗??相等向量一定是平行向量吗?(2)相等向量:长度相等且方向相同的向量叫做相等向量。记作:a=b规定:0=0ab1.若非零向量AB//CD,那么AB//CD吗?2.若a//b,则a与b的方向一定相同或相反吗?o.baABCDDCBA11个例1.如图设O是正六边形ABCDEF的中心,写出图中与向量OA相等的向量。OA=DO=CB变式一:与向量OA长度相等的向量有多少个?变式二:是否存在与向量OA长度相等,方向相反的向量?存在,为FECB、DO、FE变式三:与向量OA长度相等的共线向量有哪些?练习1.下面几个命题:(3)若
12、a
13、=
14、b
15、
16、,则a=b(2)若
17、a
18、=0,则a=0
19、a
20、=
21、b
22、a∥b(4)两个向量a、b相等的充要条件是(1)若a=b,b=c,则a=c。当b≠0时成立。变:若a∥b,b∥c,则a∥cA.0 B.1C.2D.3其中真命题的个数是()(5)若A、B、C、D是不共线的四点,则AB=DC是四边形ABCD是平形四边形的充要条件。ABDCBACD向量定义长度(模)表示几何表示法:有向线段符号表示法:零向量单位向量向量间的关系相等平行(共线)a,bAB向量的有关概念特殊向量小结:向量加法、减法运算及其几何意义知识回顾1.向量与数量有何区别?2.怎样来表示向量
23、?3.什么叫相等向量向量?数量只有大小没有方向,如:长度,质量,面积等向量既有大小又有方向,如位移,速度,力等1)用有向线段来表示,线段的长度表示线段的大小,箭头所指方向表示向量的方向。AB2)用字母来表示,或用表示向量的有向线段的起点和终点字母表示.如,长度相等,方向相同的向量相等.(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的大小和方向的前提下,移到任何位置.)上海香港台北引入1:上海香港台北OABOABOA+AB=OB向量加法的三角形法则:CAB首尾相接尝试练习一:ABCDE(1)根据图示填空:例1.如
24、图,已知向量,求作向量。则三角形法则作法1:在平面内任取一点O,作,,例题讲解:思考1:如图,当在数轴上两个向量共线时,加法的三角形法则是否还适用?如何作出两个向量的和?(1)(2)ABCBCA当向量不共线时,和向量的长度与向量的长度和之间的大小关系如何?三角形的两边之和大于第三边综合以上探究我们可得结论:图1表示橡皮条在两个力F1和F2的作用下,沿MC方向伸长了EO;图2表示橡皮条在一个力F的作用下,沿相同方向伸长了相同长度EO。从力学的观点分析,力F与F1、F2之间的关系如何?MCEOF1F2图1MEOF图2F=F1+F2F2F1F引入
25、2:OABC起点相同向量加法的平行四边形法则:OABC起点相同向量加法的平行四边形法则:文字表述为:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是和向量。例1.如图,已知向量,求作向量。例题讲解:作法2:在平面内任取一点O,作,,以为邻边作OACB,连结OC,则平行四边形法则尝试练习二:(3)已知向量,用向量加法的三角形法则和平行四边形法则作出①②思考2:数的加法满足交换律和结合律,即对任意,有那么对任意向量的加法是否也满足交换律和结合律?请画图进行探索。OABCACD例2.长江两岸之间没有大桥的地方,常常
26、通过轮船进行运输,如图所示,一艘船从长江南岸A点出发,以km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度
此文档下载收益归作者所有