CPLEX in Python 帕累托最优.pdf

CPLEX in Python 帕累托最优.pdf

ID:47993417

大小:813.06 KB

页数:11页

时间:2020-01-10

CPLEX in Python 帕累托最优.pdf_第1页
CPLEX in Python 帕累托最优.pdf_第2页
CPLEX in Python 帕累托最优.pdf_第3页
CPLEX in Python 帕累托最优.pdf_第4页
CPLEX in Python 帕累托最优.pdf_第5页
CPLEX in Python 帕累托最优.pdf_第6页
CPLEX in Python 帕累托最优.pdf_第7页
CPLEX in Python 帕累托最优.pdf_第8页
CPLEX in Python 帕累托最优.pdf_第9页
CPLEX in Python 帕累托最优.pdf_第10页
资源描述:

《CPLEX in Python 帕累托最优.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、TheWarehouseProblemTheWarehouseProblemisawell-knowoptimizationcasefoundinmanytextbooks.Theproblemconsists,givenasetofcandidatewarehouselocationsandasetofstorestodecidewhichwarehousetoopenandwhichwarehousewillserverwhichstore.InputDataDataisprovidedasfollows:Foreachwarehouse,wereq

2、uireatuple(name,capacity,fixed-cost),wherenameistheuniquenameofthewarehouse,capacityisthemaximumnumberofstoresitcansupplyandfixed_costisthecostincurredbyopeningthewarehouse.Foreachcouple(warehouse,store)asupply_costwhichestimatesthecostofsupplyingthisstorebythiswarehouse.Acompactwa

3、yofrepresentingthedataisaPythondictionary:foreachwarehousetuple,listallsupplycostsforallstores.BusinessDecisionsTheproblemconsistsindecidingwhichwarehousewillbeopenandforeachstore,bywhichwarehouseitwillbesupplied.BusinessConstraintsDecisionsmustsatisfythefollowing(simplified)busin

4、essconstraints:1.Unicity:eachstoreissuppliedbyoneuniquewarehouse2.Astorecanonlybesuppliedbyanopenwarehouse3.Capacity:thenumberofstoressuppliedbyawarehousemustbelessthanitscapacityBusinessObjectiveThegoalistominimizethetotalcostincurredbythedecisions,whichismadeoftwocosts:TheTotal

5、OpeningCostisthesumofopeningcostsrangingoverallopenwarehouses.TheTotalSupplyCostisthesumofsupplycostsforallthechosen(warehouse,store)pairsTobeginwith,let'sdefineasmallwarehousedataset:In [17]:WAREHOUSES={('Bonn',1,20):[20,28,74,2,46,42,1,10,93,47],('Bordeaux',4,35):[24,27,97,55,96

6、,22,5,73,35,65],('London',2,32):[11,82,71,73,59,29,73,13,63,55],('Paris',1,37):[25,83,96,69,83,67,59,43,85,71],('Rome',2,25):[30,74,70,61,54,59,56,96,46,95],('Brussels',2,28):[30,74,70,61,34,59,56,96,46,95]}print(WAREHOUSES)print("#candidatewarehouses=%d"%len(WAREHOUSES))print("#

7、storestosupply=%d"%len(list(WAREHOUSES.values())[0])){('London',2,32):[11,82,71,73,59,29,73,13,63,55],('Bordeaux',4,35):[24,27,97,55,96,22,5,73,35,65],('Paris',1,37):[25,83,96,69,83,67,59,43,85,71],('Bonn',1,20):[20,28,74,2,46,42,1,10,93,47],('Brussels',2,28):[30,74,70,61,34,59,5

8、6,96,46,95],('Rome',2,25):[30,74,70,61,5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。