欢迎来到天天文库
浏览记录
ID:47980701
大小:116.50 KB
页数:13页
时间:2019-11-11
《2019-2020学年高一数学1月月考试题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020学年高一数学1月月考试题(含解析)注意事项:1.本试卷分满分100分.考试时间100分钟。2.答题前,考生先将自己的准考证号、姓名、座位号用0.5毫米黑色签字笔填写清楚。 3.选择题使用2B铅笔填涂,非选择题用0.5毫米黑色签字笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内作答,超区域书写的答案无效;在草稿纸、试卷上答题无效。一、选择题(每小题4分,共48分)1.1.设集合,,则A∪B中的元素个数是A.11B.10C.16D.15【答案】C【解析】【分析】首先确定集合A,B,然后求解并集运算确定其中元素的个数即可.【详解】由题意可得:,,据此
2、可得:,则A∪B中的元素个数是16.本题选择C选项.【点睛】本题主要考查集合的表示方法,并集运算及其应用等知识,意在考查学生的转化能力和计算求解能力.2.2.下列函数既是偶函数,又在上是增函数的是A.B.C.D.【答案】A【解析】【分析】由题意结合函数的解析式逐一考查函数的性质即可.【详解】逐一考查所给函数的性质:A.是偶函数,且函数在是增函数,该选项符合题意;B.是非奇非偶函数,且函数在是增函数,该选项不合题意;C.是非奇非偶函数,且函数在是减函数,该选项不合题意;D.是偶函数,且函数在是减函数,该选项不合题意;本题选择A选项.【点睛】本题主要考查函数单调性的判断,函数奇
3、偶性的判断等知识,意在考查学生的转化能力和计算求解能力.3.3.已知扇形的弧长为6,圆心角弧度数为3,则其面积为A.3B.6C.9D.12【答案】B【解析】【分析】首先求得半径,然后利用面积公式求解其面积即可.【详解】设扇形的半径为,由题意可得:,则,扇形的面积.本题选择B选项.【点睛】本题主要考查弧度制的定义,扇形面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.4.4.设α是第三象限角,化简:=A.1B.0C.﹣1D.2【答案】C【解析】【分析】由题意结合同角三角函数基本关系整理计算即可求得最终结果.【详解】由题意可得:,α是第三象限角,则,据此可得:.本题
4、选择C选项.【点睛】本题主要考查同角三角函数基本关系,三角函数式的化简等知识,意在考查学生的转化能力和计算求解能力.5.5.已知为常数,幂函数满足,则=A.2B.﹣2C.D.【答案】D【解析】【分析】首先求得的值,然后结合幂函数的解析式求解的值即可.【详解】由题意可得:,则,则幂函数的解析式,据此可知.本题选择D选项.【点睛】本题主要考查指数对数运算,幂函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.6.6.平面直角坐标系中,角的始边在轴非负半轴,终边与单位圆交于点,将其终边绕点逆时针旋转后与单位圆交于点,则的横坐标为A.B.C.D.【答案】A【解析】【分析】
5、由题意结合三角函数的定义和两角和差正余弦公式整理计算即可求得最终结果.【详解】设A点处对应的角度为,B点处对应的角度为,由题意可得:,,且,由两角和的余弦公式可得:.即的横坐标为.本题选择A选项.【点睛】本题主要考查三角函数的定义及其应用,两角和差正余弦公式等知识,意在考查学生的转化能力和计算求解能力.7.7.要得到函数的图像,只需将的图象A.向左移动个单位B.向右移动个单位C.向左移动1个单位D.向右移动1个单位【答案】A【解析】因为,所以需将的图像向左移动个单位,选A.8.8.如图所示是某条公共汽车路线收支差额y与乘客量x的图象(收支差额=车票收入—支出费用)由于目前本
6、条线路在亏损,公司有关人员提出了两条建议:建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格.图中虚线表示调整前的状态,实线表示调整后的状态.在上面四个图象中A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)【答案】B【解析】建议(1)是不改变车票价格,减少支出费用,也就是增大y,车票价格不变,即平行于原图像;故①反映了建议(1);建议(2)是不改变支出费用,提高车票价格,即图形增大倾斜度,提高价格;故③反映了建议(Ⅱ);故答
7、案为:B.9.9.已知函数,若,则的值为A.﹣1B.0C.1D.2【答案】A【解析】【分析】由题意结合分段函数的解析式整理计算即可求得最终结果.【详解】由函数的解析式可知,当时,,当时,,由可得:,即:,据此有:,解得:.本题选择A选项.【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值
此文档下载收益归作者所有