2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1

2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1

ID:47974851

大小:199.50 KB

页数:5页

时间:2019-11-10

2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1_第1页
2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1_第2页
2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1_第3页
2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1_第4页
2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1_第5页
资源描述:

《2019-2020年高中数学 2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学2.4.1抛物线的标准方程同步练习(含解析)苏教版选修1-1课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内到一个定点F和一条定直线l(F不在l上)距离________的点的轨迹叫做抛物线,点F叫做抛物线的________,直线l叫做抛物线的________.2.抛物线的标准方程(1)方程y2=±2px,x2=±2py(p>0)叫做抛物线的________方程.(2)抛物线y2=2px(p>0)的焦点坐标是__________,准线

2、方程是__________,开口方向________.(3)抛物线y2=-2px(p>0)的焦点坐标是______,准线方程是________,开口方向________.(4)抛物线x2=2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(5)抛物线x2=-2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.一、填空题1.抛物线y2=ax(a≠0)的焦点到其准线的距离是_______________________.2.已知抛物线的顶点在原点,对称轴

3、为x轴,焦点在曲线-=1上,则抛物线方程为________.3.与抛物线y2=x关于直线x-y=0对称的抛物线的焦点坐标是________.4.过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有________条.5.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,BF=2,则△BCF与△ACF的面积之比为________.6.抛物线x2+12y=0的准线方程是__________.7.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为

4、2,则该抛物线的准线方程为____________.8.已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是____________________.二、解答题9.已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.10.求焦点在x轴上且截直线2x-y+1=0所得弦长为的抛物线的标准方程.能力提升11.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为________.12.求与圆(x-

5、3)2+y2=9外切,且与y轴相切的动圆圆心的轨迹方程.1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y轴上的抛物线的标准方程x2=2py通常又可以写成y=ax2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax2来求其焦点和准线时,必须先化成标准形式.§2.4 抛物线2.4.1 抛物线的标准方程知识梳理1.相等 焦点 准线2.(1)标准 (2)(,0) x=- 向右(3)(-,0) x= 向左(4)

6、(0,) y=- 向上(5)(0,-) y= 向下作业设计1.解析 因为y2=ax,所以p=,即该抛物线的焦点到其准线的距离为.2.y2=±8x解析 由题意知抛物线的焦点为双曲线-=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y2=8x或y2=-8x.3.(0,)解析 y2=x关于直线x-y=0对称的抛物线为x2=y,∴2p=,p=,∴焦点为.4.2解析 容易发现点M(2,4)在抛物线y2=8x上,这样l过M点且与x轴平行时,l与抛物线有一个公共点,或者l在M点上与抛物线相切.5.解析 如图所示,设过点M(,0)的直线方程为y=k(x-),

7、代入y2=2x并整理,得k2x2-(2k2+2)x+3k2=0,则x1+x2=.因为BF=2,所以BB′=2.不妨设x2=2-=是方程的一个根,可得k2=,所以x1=2.=====.6.y=3解析 抛物线x2+12y=0,即x2=-12y,故其准线方程是y=3.7.x=-1解析 ∵y2=2px的焦点坐标为(,0),∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.8.

8、(-∞,-3]∪[1,+∞)解析 由题意知,设P(x1,x-1),Q(x2,x-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。