等差数列前n项和教案

等差数列前n项和教案

ID:47961344

大小:412.11 KB

页数:8页

时间:2020-01-18

等差数列前n项和教案_第1页
等差数列前n项和教案_第2页
等差数列前n项和教案_第3页
等差数列前n项和教案_第4页
等差数列前n项和教案_第5页
资源描述:

《等差数列前n项和教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、等差数列的前n项和(第一课时)教学设计【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2.通过公式的运用体会方程的思想。三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。【教学重点】等差数列前n项和公式的推导和应用。【教学难点】在等差数列前n项和公式的推导过程

2、中体会倒序相加的思想方法。【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…8我们称a1+a2+a3+…+an为数列{an}的

3、前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1=a1,S7=a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。二、问题牵引,探究发现问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱?即:S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。特点:首项与末项的和:1+

4、100=101,第2项与倒数第2项的和:2+99=101,第3项与倒数第3项的和:3+98=101,······第50项与倒数第50项的和:50+51=101,于是所求的和是:101×50=5050。1+2+3+······+100=101×50=5050同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办呢?探索与发现1:假如让你计算从第一人到第21人的钱数,高斯的首尾配对法行吗?即计算S21=1+2+3+······+21的

5、值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发?81+2+3+……+20+2121+20+19+……+2+1S21=1+2+3+…+21=(21+1)×21÷2=231这个方法也很好,那么项数为偶数这个方法还行吗?探索与发现2:第5人到12人一共有多少钱数?学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师

6、演示动画帮助学生)S8=5+6+7+8+9+10+11+12=【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下面这个等差数列的前n项和?问题2:等差数列1,2,3,…,n,…的前n项和怎么求呢?解:(根据前面的学习,请学生自主思考独立完成)【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基础。至此同学们已经掌握了倒序相加法,相信大家可以推导更一般

7、的等差数列前n项和公式了。问题3:对于一般的等差数列{an}首项为a1,公差为d,如何推导它的前n项和sn公式呢?即求=a1+a2+a3+……+an=8∴(1)+(2)可得:2∴公式变形:将代入可得:【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n项和公式,从而完成本节课的中心任务。在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。三、公式的认识与理解:1、根据前面的推导可知等差数列求和的两个公式为:(公式一)(公式二)探究:1、(1)相同点:都需知道a1与n;(2)不同

8、点:第一个还需知道an,第二个还需知道d;(3)明确若a1,d,n,an中已知三个量就可求Sn。2、两个公式共涉及a1,d,n,an,Sn五个量,“知三”可“求二”。2、探索与发现3:等差数列前n项和公式与梯形面积公式有什么联系?用梯形面积公式记忆等差数列前n项

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。