资源描述:
《八年级数学上册 第十三章 轴对称 13.3 等腰三角形 13.3.4 特殊直角三角形的性质备课资料教案 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十三章13.3.4特殊直角三角形的性质知识点:含30°角的直角三角形的性质 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.归纳整理:(1)此性质常用于计算三角形的边、角,也是证明线段成倍数的常用方法;(2)但是该性质一定要注意两个条件:①三角形必须是直角三角形;②必须存在一个锐角是30°.考点1:含30°角的直角三角形的边角关系【例1】如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:AD=BE.(2)求AD的
2、长.解:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=AC.又AE=CD,∴△ABE≌△CAD(SAS),∴BE=AD.(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD.∵∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,又∵BQ⊥AD,∴∠PBQ=30°,∴PB=2PQ=6,∴BE=PB+PE=7,∴AD=BE=7.点拨:因为等边三角形的三条边都相等,三个角都等于60°,所以在等边三角形中容易找到全等三角形,本题第(1)题就是通过全等三角形证两线段相等;
3、在第(1)题的基础上,可求得∠BPQ的度数,从而联想直角三角形中含30°角的性质求得PB之长,再求AD的长.考点2:特殊直角三角形性质的实际应用【例2】如图,一艘轮船早上8时从点A向正北方向出发,小岛P在轮船的北偏西15°方向,轮船每小时航行15海里,11时轮船到达点B处,小岛P此时在轮船的北偏西30°方向.(1)求PB的距离;(2)在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.解:(1)过点P作PE⊥AB,垂足为E,由题意,得∠PAB=15°,∠
4、PBC=30°.∴ ∠BPA=∠PBC-∠A=15°.∴ BP=BA.又AB=3×15=45海里,∴ BP=45海里.(2)∵ PE⊥AB,∠PBC=30°,∴ PE=BP=22.5海里,∵ 22.5海里>20海里,∴ 如果轮船不改变方向继续向前航行,不会有触礁危险.点拨:过点P作PE垂直于AB的延长线,垂足为E,根据三角形的外角可知∠BPA=∠A,使得BP=AB,所以可以求出BP的距离;在(2)中,只要求出PE的长即可,可以根据直角三角形中30°角的性质解决.