数学建模——投资的风险和效益

数学建模——投资的风险和效益

ID:47931231

大小:370.00 KB

页数:14页

时间:2019-11-06

数学建模——投资的风险和效益_第1页
数学建模——投资的风险和效益_第2页
数学建模——投资的风险和效益_第3页
数学建模——投资的风险和效益_第4页
数学建模——投资的风险和效益_第5页
资源描述:

《数学建模——投资的风险和效益》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、多目标优化摘要:对市场上的多种风险投资和一种无风险资产(存银行)进行组合投资策略的的设计需要考虑连个目标,总体收益尽可能大和总体风险尽可能小,然而,这两目标并不是相辅相成的,在一定意义上是对立的。模型一应用多目标决策方法建立模型,以投资效益没目标,对投资问题建立个一个优化模型,不同的投资方式具有不同的风险和效益,该模型根据优化模型的原理,提出了两个准则,并从众多的投资方案中选出若干个,使在投资额一定的条件下,经济效益尽可能大,风险尽可能小。模型二给出了组合投资方案设计的一个线性规划模型,主要思想是通过线性加权综合两个设计目标:假设在投资规模相当大的基础上,将交

2、易费函数近似线性化,通过决策变量化解风险函数的非线性。【关键字】:经济效益线性规划模型有效投资方案线性加权1.问题重述投资的效益和风险(1998年全国大学生数学建模竞赛A题)市场上有n种资产(如股票、债券、…)Si(i=1,…n)供投资者选择,某公司有数额为M的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这n种资产进行了评估,估算出在这一时期内购买Si的平均收益率为并预测出购买Si的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险用所投资的Si中最大的一个风险来度量。购买Si要付交易费,费率为,并且当购

3、买额不超过给定值时,交易费按购买计算(不买当然无须付费)。另外,假定同期银行存款利率是,且既无交易费又无风险。(=5%)已知n=4时的相关数据如下:(%)(%)(%)(元)S1282.51103S2211.52198S3235.54.552S4252.66.540试给该公司设计一种投资组合方案,即用给定的资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。(2)试就一般情况下对以上问题进行讨论,并利用一下数据进行计算。9.6422.118118.5543.240749.4606.042823.9421.55498.11.27.62

4、7014393.439740.7685.617831.233.433.122033.653.52.747536.8402.924811.8315.119595.55.732035462.7.2679.45.34.532815237.61312模型的假设与符号说明2.1模型的假设:(1)在短时期内所给出的平均收益率,损失率和交易的费率不变。(2)在短时期内所购买的各种资产(如股票,证券等)不进行买卖交易。即在买入后就不再卖出。(3)每种投资是否收益是相互独立的。(4)在投资的过程中,无论盈利与否必须先付交易费。2.2符号说明:参数范围说明Sii=1,2…n欲购买

5、的第i种资产的种类M相当大公司现有的投资总额xii=1,2…n公司购买Si烦人金额rii=1,2…n公司购买Si的平均收益率qii=1,2…n公司购买Si的平均损失率pii=1,2…n公司购买Si超过ui时所付的交易费Eii=1,2…n公司购买资产Si所或得的收益k0.1~1权因子A不等式右端的系数矩阵f目标向量3问题分析由于资产预期收益的不确定性,导致它的风险特性,在这里投资Si的平均收益率为xiri,风险损失为xiqi。要使投资者的净收益尽可能大,而风险损失尽可能小,第一个解决方法就是进行投资组合,分散风险,以期待获得较高的收益,模型的目的就在于求解最优投

6、资组合,当然最优投资还决定于个人的因素,即投资者对风险,收益的偏好程度,怎样解决二者的相互关系也是模型要解决的一个重要问题。本题所给的投资问题是利用原给的数据,通过计算分析得到一种尽量让人满意的投资方案,并推广到一般情况,利用第二问进行验证,下面是实际要考虑的两点情况:(1)在风险一定的情况下,取得最大的收益(2)在收益一定的情况下,所冒的风险最小当然,不同的投资者对利益和风险的侧重点不同,将在一定的范围内视为正常,所以只需要给出一种尽量好的模型,即风险尽量小,收益尽量大,这是一般投资者的心里。对于模型一,在问题一的情况下,公司可对五种项目投资,其中银行的无风

7、险,收益r0=5%为定值,在投资期间是不会变动的,其它的投资项目虽都有一定的风险,但其收益可能大于银行的利率,我们拟建立一个模型,这个模型对一般的投资者都适用,并根据他们风险承受能力的不同提出多个实用于各种类型人的投资方案(一般投资者分为:冒险型与保守型。即越冒险的人对风险损失的承受能力越强)。对于模型二:由于资产预期收益的不确定性,导致它的风险特性,将资产的风险预期收益率用一定的表达式表示出来,在这里,投资Si的平均收益为X(i)*r(i),风险损失为r(i)*q(i).要使投资者的净收益尽可能大,而风险损失尽可能小。4模型的建立与求解投资者的净收益为购买各

8、种资产及银行的收益减去此过程中的交易费

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。