欢迎来到天天文库
浏览记录
ID:47906409
大小:118.00 KB
页数:7页
时间:2019-10-22
《2018高考数学(文)热点题型 概率与统计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、概率与统计热点一 统计与统计案例以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估计,判断.常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生数据处理能力.【例1】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机
2、器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解 (1)当x≤19时,y=3800;当x>19时,y=38
3、00+500(x-19)=500x-5700.所以y与x的函数解析式为y=(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为(3800×70+4300×20+4800×10)=4000,若每台机器在购机同时都购买20个易损零件,则这100
4、台机器中有90台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为(4000×90+4500×10)=4050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【类题通法】(1)本题将分段函数、条形图、样本的数字特征交汇命题,体现了统计思想的应用意识.(2)本题易错点有两处:一是混淆了频率分布直方图与柱状图,导致全题皆错;二是审题不清或不懂题意,导致解题无从入手.避免此类错误,需认真审题,读懂题意,并认真观察频率分布直方图与柱状图的区别,
5、纵轴表示的意义.【对点训练】近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽9人,其中女性抽多少人?(2)为了研究三高疾病是否与性别有关,请计算出统计量K2的观测值k0,并说明是否可以在犯错误的概率不超过0.005的前提下认为三高疾病与性别有关.患三高疾病不患三高疾病总计男630女总计36下面的临界值表供参考:P(K2≥k0
6、)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828(参考公式K2=,其中n=a+b+c+d)解 (1)完善补充列联表如下:患三高疾病不患三高疾病总计男24630女121830总计362460在患三高疾病人群中抽9人,则抽取比例为=,所以女性应该抽取12×=3(人).(2)根据2×2列联表,则K2的观测值k0==10>7.879.所以可以在犯错误的概率不超过0.005的前提下认为是否患三高疾病与性别有关.热点二 以实际背
7、景为载体考查古典概型从近几年的高考命题来看,高考对概率的考查,一般以实际生活题材为背景,以应用题的形式出现.概率应用题侧重于古典概型,主要考查随机事件、等可能事件、互斥事件、对立事件的概率.解决简单的古典概型试题可用直接法(定义法),对于较为复杂的事件的概率,可以利用所求事件的性质将其转化为互斥事件或其对立事件的概率求解.解决古典概型问题的关键在于确定基本事件.【例2】2015年国办发[2015]3号文件的公布让多年来一直期待涨工资的机关事业单位人员兴奋不已.某事业单位随机从甲部门抽取3人(2男1女),从乙部
8、门抽取4人(2男2女),然后从这7人中随机抽取2人代表单位去参加市里的相关会议.(1)求这2人全部来自甲部门的概率;(2)求这2人中至少有1人是男生的概率.解 将甲部门的2名男生分别记为A,B,1名女生记为a,乙部门的2名男生分别记为C,D,2名女生分别记为b,c,从这7人中任选2人的所有基本事件为(A,B),(A,a),(A,C),(A,D),(A,b),(A,c),(B,a),(B,C),(B,
此文档下载收益归作者所有