欢迎来到天天文库
浏览记录
ID:47827568
大小:2.99 MB
页数:16页
时间:2019-11-18
《2018年高中数学 第1章 计数原理 1.2 排列教学案 苏教版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2排列第1课时 排列与排列数公式1.甲、乙两名同学参加一项活动,其中一名参加上午的活动,另外一名参加下午的活动.问题1:甲在上午和乙在上午是相同的安排法吗?提示:不是.问题2:有几种不同的排法?提示:两种.甲上午,乙下午;甲下午,乙上午.2.若从甲、乙、丙三名同学中选出两名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.问题3:让你去安排这项活动,需要几步?提示:分两步.问题4:它们是什么?提示:第一步确定上午的同学,第二步确定下午的同学.问题5:有几种排法?提示:上午有3种,下午有2种,因分步完成共3×2=6种.问题
2、6:这些排法相同吗?提示:不相同,它们是有顺序的.3.从a、b、c中任取两个元素,按照一定的顺序排成一列.问题7:共有多少种不同的排列方法?提示:3×2=6种.问题8:试写出它们的排列.提示:ab,ac,ba,bc,ca,cb.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.已知数字1,2,3,4,5,6.问题1:从1,2,3,4,5,6中选出两个数字,能构成多少个没有重复数字的两位数?提示:有6×5=30(个).问题2:从1,2,3,4,5,6中选出三个数字,能
3、构成多少个没有重复数字的三位数?提示:有6×5×4=120(个).问题3:从1,2,3,4,5,6中选出四个数字,能构成多少个没有重复数字的四位数?提示:有6×5×4×3=360(个).问题4:若从n个不同元素中取出m(m≤n)个元素排成一列,有多少种不同的排法?提示:有n(n-1)(n-2)…(n-m+1)(个).排列数全排列定义从n不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列表示法AA公式乘积形式A=n(n-1)(n-2)…(n-m+
4、1)A=n(n-1)(n-2)·…·3·2·1阶乘形式A=A=n!性质A=1;0!=1备注n,m∈N*,且m≤n1.判断一个具体问题是不是排列问题主要看从n个元素中取出m个元素后,在安排m个元素时,是有序还是无序,有序是排列,无序就不是排列.也就是说排列与元素的顺序有关,与元素顺序无关的不是排列.2.排列与排列数是两个不同的概念,排列是一个具体的排法,不是数;排列数是所有排列的个数,它是一个数. [例1] 下列哪些问题是排列问题:(1)从10名学生中抽2名学生开会;(2)从2,3,5,7,11中任取两个数相乘;(3)以圆上的10个点为端点作
5、弦;(4)10个车站,站与站间的车票.[思路点拨] 利用排列的定义去判断,关键是看取出的元素是否与顺序有关.[精解详析] (1)2名学生开会没有顺序,不是排列问题.(2)两个数相乘,与这两个数的顺序无关,不是排列问题.(3)弦的端点没有先后顺序,不是排列问题.(4)车票使用时,有起点和终点之分,故车票的使用是有顺序的,是排列问题.[一点通] 判断一个具体问题是否有顺序的方法:变换元素的位置,看结果有无变化,若有变化,则与元素的顺序有关,是排列问题;否则,为非排列问题.1.更改例题的各条件如下,请重新判断是不是排列问题:(1)抽2名学生当正、副
6、班长;(2)取两个数相除;(3)以圆上10个点为端点作有向线段;(4)10个车站间站与站的票价.解:(1)2名学生当正、副班长是有顺序的,故是排列问题.(2)两个数有除数和被除数之分,有顺序,是排列问题.(3)有向线段有起点和终点之分,有顺序,是排列问题.(4)两车站间来回的票价一样,故与顺序无关,不是排列问题.2.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、
7、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)、(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如,甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题. [例2] A,B,C,D四名同学站成一排照相,写出A不站在两端的所有可能站法.[
8、思路点拨] 解决本题可通过树形图法,画出依题意的形状,便可写出不同的站法.[精解详析] 如图所示的树形图:故所有可能的站法是BACD,BADC,BCAD,BDAC,
此文档下载收益归作者所有