欢迎来到天天文库
浏览记录
ID:47824600
大小:4.45 MB
页数:18页
时间:2019-11-17
《安徽省江南十校2018届高三冲刺联考(二模)文科数学试卷(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018年“江南十校”高三学生冲刺联考(二模)文科数学第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则下列关系正确的是()A.B.C.D.【答案】C【解析】分析:由指数函数与对数函数的性质求出集合A、B,再验证各选择支结论是否成立.详解:由题意,,∴,只有C正确.故选C.点睛:集合问题中首要任务是确定集合的元素,对描述法表示的集合,其代表元的形式是什么很重要,这个代表元是实数,还是有序实数对(点)?是实数时,表示函数的定义域还是函数的值域?只有确定了
2、代表元的意义,才能确定正确的求解方法,确定出集合.本题还考查的集合间的关系,掌握补集运算与包含关系是解题关键.2.若复数(是虚数单位),则的共轭复数是()A.B.C.D.【答案】D【解析】分析:由复数乘法求得,再由共轭复数定义得结论.详解:由题意,∴,故选D.点睛:本题考查复数的运算与复数的概念,只要乘法法则与共轭复数的概念就能正确求解,属于基础题.3.已知向量与为单位向量,若也是单位向量,则向量与的夹角为()A.B.C.D.【答案】A【解析】分析:把的长度为1用数量积表示,再结合向量的夹角公式可得.详解:由题意,∴,∴,故选A.点睛:本题考查平
3、面向量数量积的定义,掌握相应的公式是解题基础.向量数量积的定义:;性质:,.4.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】分析:把化为同底数的幂,是对数化简后也可化为2的幂,这样由指数函数的性质可比较大小.详解:,,,∴,故选C.点睛:在幂和对数比较时,能化为同底数的,化为同底数的幂或对数,利用指数函数或对数函数性质比较,不能化为同底数的,或不同形式的数可与中间值比较,如与0或1比较,最后可得结论.5.下列命题中,真命题的个数是()①已知直线:,:,则“”是“”的充要条件;②“若,则”的逆否命题为真命题;③命题“若,则”的
4、否命题是“若,则,至少有一个不等于”;④命题:,,则:,.A.B.C.D.【答案】C【解析】分析:对四个命题分别研究其真假,才能选出正确选项.详解:①直线,即或,因此题中应是充分不必要条件,①错误;②若,则,所以,是真命题,因此其逆否命题也是真命题,②正确;③正确;④是:,④错误.所以有两个命题正确,故选C.点睛:本题考查命题的真假判断,解题时需对每一个命题进行判断,这就要求掌握相应的知识方法并能灵活运用.6.已知等差数列的公差为,前项和为,且,则()A.B.C.D.【答案】B【解析】分析:利用向量的线性运算把用表示出来后,由向量相等得出数列的递
5、推关系.详解:∵,∴,即,又,∴,∴,∴.故选B.点睛:等差数列问题可用基本量法求解,即把已知条件用首项和公差表示并求出即可得通项公式和前项和公式.基本量法的两个公式:,.7.已知实数,满足,则的最大值是()A.B.C.D.【答案】B【解析】分析:作出可行域,由的几何意义求解.详解:作出可行域,如图阴影部分(含边界),,其中表示可行域内的点与定点连线的斜率,由得,设切点为,则切线,解得,,即切点为,这P点的切线斜率为1,即的最大值为1,∴的最大值为1+1=2.故选B.点睛:线性规划问题中,关键是作出可行域,作出目标函数对应的直线,然后平移直线得出
6、最优解,如果目标函数不是一次的,一般要确定其几何意义,如直线的斜率,两点间距离等,再利用几何意义求解.8.已知实数,则函数在定义域内单调递减的概率为()A.B.C.D.【答案】C【解析】分析:求出函数单调递减时的范围,由几何概型概率公式可得.详解:由题意,在时,恒成立,即,又,当且仅当,即时等号成立,即的最小值为3,∴,从而,∴所求概率为.故选.点睛:本题考查几何概型,考查导数与函数的单调性,解题关键是由不等式在恒成立求得参数的取值范围,求取值范围的方法是分离参数法转化为求函数的最值,这可由导数求得也可由基本不等式求得.9.已知某几何体的三视图如
7、图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】分析:由三视图还原出原几何体,再计算体积.详解:由三视图.原几何体是四面体,如图,它是由长宽高分别为5,4,3的长方体截出的,其体积为.故选A.点睛:由三视图还原几何体时,首先要掌握基本几何体的三视图,其次对多面体来讲,可先画一个长方体(或正方体),然后在长方体(或正方体)上取点连线,想象其三视图,用这种方法可以很方便地得出原几何体.10.已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,记椭圆和双曲线的离心率分别为,,则的最大值为()A.B.C.D.【答案】D【解析】分析:通
8、过椭圆与双曲线的定义,建立的边长之间的关系,再转化为离心率之间的关系,然后由基本不等式求得最大值.详解:设,∵,∴,一方面,另一方面,∴
此文档下载收益归作者所有