欢迎来到天天文库
浏览记录
ID:47815663
大小:1.26 MB
页数:12页
时间:2019-11-16
《广西南宁市第三中学2017-2018学年高二数学下学期期中试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、广西南宁市第三中学2017-2018学年高二数学下学期期中试题理一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,集合,则集合()A.B.C.D.2.若,则=)A.B.1C.5D.253.已知向量.若与平行,则)A.B.C.D.4.设等比数列满足,则公比)A.2B.C.D.5.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法的种数为()A.6B.10C.20D.306
2、.设随机变量的概率分布列为,其中,那么的值为()A.B.C.D.7.执行如图所示程序框图,输出的()A.3B.4C.5D.6第7题图第8题图8.在我国古代数学名著九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,且,则异面直线与所成角的余弦值为()A.B.C.D.9.已知,则()A.B.C.D.10.曲线在点处的切线与坐标轴围成的三角形的面积为()A.2B.C.D.111.抛物线与直线交于A,B两点,其中A点的坐标是.该抛物线的焦点为F,则()A.7B.C.6D.512.已知,若函数有四个零点,则实数的取
3、值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.实数,满足约束条件:,则的最大值为__________.14.的展开式中含项的系数是__________(用数字作答).15.将函数的图像向左平移个单位,若所得的图像关于直线对称,则的最小值为__________.16.设F为双曲线C:的右焦点,过F且斜率为的直线与双曲线C的两条渐近线分别交于两点,且,则双曲线C的离心率为__________.三、解答题:本题共6小题,共70分,其中第17题10分,第18-22题,各12分。解答应写出必要的文字说明
4、、证明过程或演算步骤。17.已知是等差数列,是其前项和,,,(1)求数列的通项公式;(2)当取何值时最大,并求出这个最大值.18.已知三个内角所对的边分别是,若.(1)求角;(2)若,求周长的最大值.19.我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到市气象观测站与市医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差(°C)1011131286就诊人数(个)222529261612该综合实践
5、研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考数据:.参考公式:回归直线,其中.20.如图,在四棱锥中,∥,且.(1)证明:平面⊥平面;(2)若,,求二面角的余弦值.21.椭圆的两焦点坐标分别为和,且椭圆经过点.(1)求椭圆的标准方
6、程;(2)过点作直线交椭圆于两点(直线不与轴重合),为椭圆的左顶点,试证明:.22.已知函数,其中.(1)若曲线在处的切线与直线垂直,求的值;(2)记的导函数为.当时,证明:存在极小值点,且.高二段考理科数学参考答案1.D【解析】由题得,,所以,,故选D.2.B【解析】=,则
7、z
8、=1.故选:B.3.D【解析】由题意得,由两向量平行可得,故选D。4.B【解析】得故选择B.5.B【解析】根据题意,先在五个盒子中确定3个,使其编号与球的编号相同,有C53=10种情况,剩下有2个盒子,2个球;其编号与球的编号不同,只有1种情况;由分步
9、计数原理,共有1×10=10种,故选B.6.D【解析】根据分布列的性质可得,,解得,故选D.7.B【解析】依次运行框图中的程序,可得:第一次,,不满足条件,继续运行;第二次,,不满足条件,继续运行;第三次,,不满足条件,继续运行;第四次,,满足条件,输出4.故选B.8.A【解析】法一:如图,分别取的中点,连,则,∴即为异面直线和所成的角(或者其补角).又由题意得,.设,则.又,∴为等边三角形,∴,∴异面直线和所成角为,其余弦值为.故选A.法二:可用补形法,把四面体补成正方体。9.C【解析】故选择C.10.D【解析】依题意得,所以
10、,所以切线方程为。当时,当时,所以切线与坐标轴围成的三角形的面积为,故选D.11.A【解析】将点A的坐标代入抛物线与直线,得,所以得抛物线与直线,由得或,所以得,又抛物线的准线是,再结合抛物线的定义得,故选A。12.D【解析】由题意得函数是偶函数,所以要使函数有
此文档下载收益归作者所有