欢迎来到天天文库
浏览记录
ID:47810453
大小:1.89 MB
页数:14页
时间:2019-11-16
《2019届高三数学第二次模拟考试试题 理 (I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019届高三数学第二次模拟考试试题理(I)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则()2.A.B.C.D.2.设为虚数单位,,若是纯虚数,则A.2B.C.1D.3.已知条件:,条件:,则是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知是锐角,若,则A.B.C.D.5.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或6.设向量满足,则()A.6B.C.10D.
2、7.某几何体的三视图如图所示,则该几何体的体积为A.64B.32C.96D.488.已知随机变量服从正态分布,且,()A.B.C.D.9.《九章算术》上有这样一道题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”假设墙厚尺,现用程序框图描述该问题,则输出()A.B.C.D.10.函数的图象大致为()A.B.C.D.11.在△ABC中,a,b,
3、c分别为内角A,B,C所对的边,且满足b=c,=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2,OB=1,则平面四边形OACB面积的最大值是()A.B.C.3D.12.设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为()A.B.C.D.1第II卷(非选择题)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须作答,第22题~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填
4、在题中横线上)13.设实数,满足则的取值范围是__________.14.的展开式中,的系数是_____________.(用数字作答)15.甲、乙、丙三位同学中有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:丙没有申请;乙说:甲申请了;丙说:甲说对了.如果这三位同学中只有一人说的是假话,那么申请了北京大学的自主招生考试的同学是_____________.16.如图,圆形纸片的圆心为,半径为cm,该纸片上的正方形的中心为,,,,为圆上的点,,,,分别以,,,为底边的等
5、腰三角形,沿虚线剪开后,分别以,,,为折痕折起,,,,使得,,,重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的倍时,该四棱锥的外接球的体积为__________.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知在中,角,,的对边分别为,,,且有.(1)求角的大小;(2)当时,求的最大值.18.(本小题满分12分)四棱锥中,底面是边长为的菱形,侧面底面,,,是中点,点在侧棱上.(Ⅰ)求证:;(Ⅱ)若是中点,求二面角的余弦值;(Ⅲ)是否存在,使平面?若存在,求出的值;若不存
6、在,说明理由.19.(本小题满分12分)第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:收看时间(单位:小时)收看人数143016282012(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全列联表:男女合计体育达人40非体育达人30合计并判断能否有的把握认为该校教职工是否为“体育达人”与“性别”有
7、关;(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828.20.(本小题满分12分)在平面直角坐标系中,点,圆,点是圆上一动点,线段的中垂线与线段交于点.(1)求动点的轨迹的方程;(2)若直线与曲线相交于两点,且存在点(其中不共线),使得被轴平分,证明:直线过定点.21.
8、(本小题满分12分)已知函数.(1)当时,试判断函数的单调性;(2)若,求证:函数在上的最小值小于.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).(1)写出曲线的参数方程和直线的普通方程;(2)已知点是曲线上一点,求点到直线的最
此文档下载收益归作者所有