欢迎来到天天文库
浏览记录
ID:47810297
大小:180.80 KB
页数:10页
时间:2019-11-16
《(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题7 解析几何学案 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、回扣7 解析几何1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:=(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:+=1(a,b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).2.直线的两种位
2、置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1∥l2⇔k1=k2.(2)两直线垂直l1⊥l2⇔k1·k2=-1.提醒 当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离
3、AB
4、=.(2)点到直线的距离d=(其中点P(x0,y0),直线方程为Ax+By+C=0).(3)两平行线间的距离d=(其中两平行线方程分别为l1:Ax+By+C1=0,l2:Ax+By+C2=0).提醒 应用两平行线间距离公式时,注意两平行线方程中x,y的系数应对应相等.4
5、.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.6.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义
6、PF1
7、+
8、PF2
9、=2a(2a>
10、F1F2
11、)
12、
13、PF1
14、-
15、PF2
16、
17、=2a(2a<
18、F1F2
19、)
20、PF
21、=
22、PM
23、点F不在直线l上,PM⊥l于M标准方程+=1(a>b>
24、0)-=1(a>0,b>0)y2=2px(p>0)图形几何性质范围
25、x
26、≤a,
27、y
28、≤b
29、x
30、≥ax≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0)轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(01)e=1准线x=-渐近线y=±x7.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断.弦长公式:
31、AB
32、=
33、x1-x2
34、=
35、y1-y2
36、.8.解决范围、最值问题的常用解法(1)数形结合法:利用待求量的几何意义,确定出极端位置后
37、,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.9.定点问题的思路(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.10.求解定值问题的两大途径(1)→(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负
38、项抵消或分子、分母约分得定值.11.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为+=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位
39、置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式,导致错解.6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.7.易误认两圆相切为两圆外切,忽视两圆内切的情况导致漏解.8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,
40、绝对值;其二,2a<
41、F1F2
42、.如果不满足第一个条
此文档下载收益归作者所有