欢迎来到天天文库
浏览记录
ID:47729098
大小:88.21 KB
页数:5页
时间:2019-10-23
《江苏专用2020版高考数学一轮复习函数第15练函数模型及其应用理含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第15练函数模型及其应用[基础保分练]1.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是________.(填序号)2.(2019·南京模拟)某物体一天中的温度T(℃)是关于时间t(时)的函数:T(t)=t3-3t+60,t=0表示中午12:00,其后t取正值,则下午3时该物体的温度为________.3.将甲桶中的aL水缓慢注入空桶乙中,tmin后甲桶中剩余的水量符合指数衰减曲线y
2、=a·ent.假设过5min后甲桶和乙桶的水量相等,若再过mmin甲桶中的水只有L,则m的值为_____.4.某类产品按质量可分10个档次,生产最低档次(第1档次为最低档次,第10档次为最高档次)每件的利润为8元,如果产品每提高一个档次,那么利润增加2元,用同样的工时,最低档次产品每天可生产60件,提高一个档次将减少3件产品,则生产第________档次的产品,所获利润最大.5.我们知道,燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2,单位:m/s,其中O表示燕子的耗氧量,则当燕子静止时的耗氧量的单位个数和当一只燕子的耗氧量是8
3、0个单位时的飞行速度分别是________.6.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(万元)与机器运转时间x(年数,x∈N*)的关系为y=-x2+18x-25,则当每台机器运转________年时,年平均利润最大,最大值是________万元.7.已知某商品的生产成本C与产量q的函数关系式为C=100+4q,每件商品的价格p与产量q的函数关系式为p=25-q,则利润L最大时,产量q=________.8.在一次为期15天的大型运动会期间,每天主办方要安排专用大巴车接送运动员到各比赛场馆参赛,每辆大巴车可乘坐40人,已知第t日参加比赛的运动员人数M与t
4、的关系是M(t)=为了保证赛会期间运动员都能按时参赛,主办方应至少准备大巴车的数量是________.9.(2018·无锡调研)某种商品进价为4元/件,当日均零售价为6元/件时,日均销售100件,当单价每增加1元时,日均销售量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为________元/件时,利润最大.10.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正整数).公司决定从原有员工中分流x(05、,若要保证产品A的年产值不减少,则最多能分流的人数是________.[能力提升练]1.某地一企创电商最近两年的“双十一”当天的销售额连续增加,其中2017年的增长率为a,2018年的增长率为b,则该电商这两年的“双十一”当天销售额的平均增长率为______________.2.(2018·常州模拟)已知甲、乙两种商品在过去一段时间内的价格走势如图所示,假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是________万元.3.某公司为了业务发展制定了一个激励销售人员的6、奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=a·log4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.4.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是_____7、___;(2)最低种植成本是________(元/100kg).5.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量,已知鱼群年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是________.6.如图,某机器人的运动轨道是边长为1米的正三角形ABC,开机后它从A点出发,沿轨道先逆时针运动再顺时针运动,每运动6米改变一次运动方向(假设按此方式无限
5、,若要保证产品A的年产值不减少,则最多能分流的人数是________.[能力提升练]1.某地一企创电商最近两年的“双十一”当天的销售额连续增加,其中2017年的增长率为a,2018年的增长率为b,则该电商这两年的“双十一”当天销售额的平均增长率为______________.2.(2018·常州模拟)已知甲、乙两种商品在过去一段时间内的价格走势如图所示,假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是________万元.3.某公司为了业务发展制定了一个激励销售人员的
6、奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=a·log4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.4.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是_____
7、___;(2)最低种植成本是________(元/100kg).5.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量,已知鱼群年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是________.6.如图,某机器人的运动轨道是边长为1米的正三角形ABC,开机后它从A点出发,沿轨道先逆时针运动再顺时针运动,每运动6米改变一次运动方向(假设按此方式无限
此文档下载收益归作者所有