资源描述:
《18.2.2 菱形的性质练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017年八年级数学下册菱形性质与判定练习题一选择题:下列四边形中不一定为菱形的是()A.对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1B.5:1C
2、.6:1D.7:1四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种B.2种C.3种D.4种如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠CDF=24°,则∠DAB等于()A.100°B.104°C.105°D.110°如图,在长方形ABCD中,AB=12,AD=14,E为AB的中点,点F,G分别在CD,AD上,若CF=4,且△EFG为等腰直角三角形,则EF的长为()A.10B.10C.12D.12用一条直线将一个菱形分
3、割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N值不可能是()A.360°B.540°C.630°D.720°如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4第6页共6页如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.2如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A.5B.3C.2D.3如图,四边形ABCD,A
4、D与BC不平行,AB=CD.AC,BD为四边形ABCD的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=(BC﹣AD);⑤四边形EFGH是菱形.其中正确的个数是()A.1个B.2个C.3个D.4个二填空题:如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=度.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是.第6页共6页把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若B
5、F=4,FC=2,则∠DEF的度数是.如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x取值范围是.在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.三解答题:如图,已知△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD平分线交BC于点E(尺规作图的痕迹保留在图中了),连EF.(1)求证:四边形ABEF
6、为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.第6页共6页如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为
7、AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.第6页共6页参考答案1.A2.A3.D4.B5.D6.B7.B8.C9.C.10.A11.C12.C13.答案为:60.14.案为:80°.15.答案为:60.16.答案为:3<x<11.17.【解答】解:当点E在CB的延长线上时,如图1所示.∵AB=5,AE=4,∴BE=3,CE=BC+BE=8;当点E在B