欢迎来到天天文库
浏览记录
ID:47568344
大小:51.50 KB
页数:5页
时间:2019-09-19
《切线长性质定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来. 2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本
2、图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (
3、一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用电脑变动点P的位置,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方
4、法.关键是作出辅助线OA,OB,要证明PA=PB. 想一想:根据图形,你还可以得到什么结论? ∠OPA=∠OPB(如图)等. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 5、归纳: 把前面所学的切线的5条性质与切线长定理一起归纳切线的性质 6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C (1)写出图中所有的垂
5、直关系; (2)写出图中所有的全等三角形; (3)写出图中所有的相似三角形; (4)写出图中所有的等腰三角形. 说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础. 二应用、归纳、反思 例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线, A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和
6、“直径所对的圆周角是直角”等.于是想到可能作辅助线AB. 从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法. 证法一.如图.连结AB. PA,PB分别切⊙O于A,B ∴PA=PB∠APO=∠BPO ∴OP⊥AB 又∵BC为⊙O直径 ∴AC⊥AB ∴AC∥OP(学生板书) 证法二.连结AB,交OP于D PA,PB分别切⊙O于A、B ∴PA=PB∠APO=∠
7、BPO ∴AD=BD 又∵BO=DO ∴OD是△ABC的中位线 ∴AC∥OP三:课堂练习(2011年安徽)如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.(2011年湖南怀化)如图,、分别切⊙于点、,点是⊙上一点,且,求∠P的度数。.(2012山东省荷泽市)如图,PA、PB是⊙o的切线,A、B为切点,AC是⊙o的直径,若∠P=46∘,则∠BAC的度数为?
此文档下载收益归作者所有