椭圆标准方程典型例题及练习题

椭圆标准方程典型例题及练习题

ID:47479501

大小:604.00 KB

页数:8页

时间:2020-01-11

椭圆标准方程典型例题及练习题_第1页
椭圆标准方程典型例题及练习题_第2页
椭圆标准方程典型例题及练习题_第3页
椭圆标准方程典型例题及练习题_第4页
椭圆标准方程典型例题及练习题_第5页
资源描述:

《椭圆标准方程典型例题及练习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、椭圆标准方程典型例题例1已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为、,且,.从椭圆定义知.即.从知垂直焦点所在的对称轴,所以在中,,可求出,,从而.∴所求椭圆方程为或.例2已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示).分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限.由余弦定理知:·.①由椭圆定义知:②,则得.故.例3已知动圆

2、过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.分析:关键是根据题意,列出点P满足的关系式.解:如图所示,设动圆和定圆内切于点.动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,8即.∴点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:.说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例4已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两

3、点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为,,线段的中点,则①-②得.由题意知,则上式两端同除以,有,将③④代入得.⑤(1)将,代入⑤,得,故所求直线方程为:.⑥将⑥代入椭圆方程得,符合题意,为所求.(2)将代入⑤得所求轨迹方程为:.(椭圆内部分)(3)将代入⑤得所求轨迹方程为:.(椭圆内部分)(4)由①+②得:,⑦,将③④平方并整理得8,⑧,,⑨将⑧⑨代入⑦得:,⑩再将代入⑩式得:,即.此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还

4、可用其它方法解决.例5已知椭圆及直线.(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程.解:(1)把直线方程代入椭圆方程得,即.,解得.(2)设直线与椭圆的两个交点的横坐标为,,由(1)得,.根据弦长公式得:.解得.方程为.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式.用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例6以椭圆的焦点为焦点,过直线上一点作椭

5、圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.解:如图所示,椭圆的焦点为,.8点关于直线的对称点的坐标为(-9,6),直线的方程为.解方程组得交点的坐标为(-5,4).此时最小.所求椭圆的长轴:,∴,又,∴.因此,所求椭圆的方程为.例7 求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程.解:设所求椭圆方程为(,).由和两点在椭圆上可得即所以,.故所求的椭圆方程为.例8已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长.分析:可以利用弦长公式求得,也可以利用椭圆定义及

6、余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解..因为,,所以.因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为.由直线方程与椭圆方程联立得:.设,为方程两根,所以,,,从而(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为,设,,则,.在中,,即;所以.同理在中,用余弦定理得,所以.8(法3)利用焦半径求解.先根据直线与椭圆联立的方程求出方程的两根,,它们分别是,的横坐标.再根据焦半径,,从而求出.例9 椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A.4   B.2  C

7、.8  D.解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以,又因为为的中位线,所以,故答案为A.说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即,利用这个等式可以解决椭圆上的点与焦点的有关距离例10已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称.解:设椭圆上,两点关于直线对称,直线与交于点.∵的斜率,∴设直线的方程为.由方程组消去得  ①。∴.于是,,即点的坐标为.∵点在直线上,∴.解得. ②将式②代入式①得  ③∵,是

8、椭圆上的两点,∴.解得.8例11在面积为1的中,,,建立适当的坐标系,求出以、为焦点且过点的椭圆方程.解:以的中点为原点,所在直线为轴建立直角坐标系,设.则∴即∴得∴所求椭圆方程为例12已知是直线被椭圆所截得的线段的中点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。