欢迎来到天天文库
浏览记录
ID:47437474
大小:302.56 KB
页数:20页
时间:2020-01-11
《初中锐角三角函数知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、锐角三角函数及其应用榆林第六中学高启鹏一、锐角三角函数中考考点归纳考点一、锐角三角函数1、锐角三角函数的定义如图,在Rt△ABC中,∠C为直角,则∠A为△ABC中的一锐角,则有对边邻边斜边ACB∠A的正弦:∠A的余弦:∠A的正切:2、特殊角的三角函数值(1)图表记忆法角三角函数三角值函数3004506001(2)规律记忆法:30°、45°、60°角的正弦值的分母都是2,分子依次为1、、;30°、45°、60°角余弦值恰好是60°、45°、30°角的正弦值。....(1)口诀记忆法口诀是:“一、二、三,三、二
2、、一,三、九、二十七,弦比二,切比三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦比二、切比三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号,不能丢掉.如tan60°=,tan45°=.这种方法有趣、简单、易记.考点二、解直角三角形1、由直角三角形中的已知元素求出其他未知元素的过程,叫做解直角三角形。2、解直角三角形的类型和解法如下表:....考点三、锐角三角函数的实际应用(高频考
3、点)仰角、俯角、坡度(坡比)、坡角、方向角仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。坡度(坡比)、坡角坡面的铅直高度和水平宽度的比叫坡度(坡比),用字母表示;坡面与水平线的夹角叫坡角,方向角指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角.注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.二、锐角三角函数常见考法(一)、锐角三角函数以选
4、择题的形式出现.例1、(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为( )A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.....【解析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在
5、RT△ACD中,tan∠CAD===2,故答案为D.(二)、锐角三角函数以填空题的形式出现.例2、(2016•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是 8 .B.运用科学计算器计算:3sin73°52′≈ 11.9 .(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【解析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算
6、结果.【解答】解:(1)∵正多边形的外角和为360°....∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9例3、(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为 27.8° (用科学计算器计算,结果精确到0.1°).【考点】解直角三角形的应用-坡度坡角问题.【解析】直接利用坡度的定义求得坡角的度数即可.【解答】解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案
7、为:27.8°.【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.例4、(2014•陕西)用科学计算器计算:+3tan56°≈ 10.02 (结果精确到0.01)【考点】计算器—三角函数;计算器—数的开方.【分析】先用计算器求出′、tan56°的值,再计算加减运算.【解答】解:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02....故答案是:10.02.【点评】本题考查了计算器的使用,要注意此题是精确到0
8、.01.例5、(2014•陕西)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为 2﹣ .【考点】旋转的性质【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【解答】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵
此文档下载收益归作者所有