资源描述:
《MATLAB中FFT的使用方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、MATLAB中FFT的使用方法调用方法X=FFT(x);X=FFT(x,N);%N为FFT后的数据点数,如果实际信号的数据点数小于N的话,则需要在FFT变换时增加采样点数,或者通过采用频率细分法在原数据后面补充一定数量的0,从而满足N个数据点X=IFFT(X);X=IFFT(X,N)一、用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。例:N=8;n=0:N-1;xn=[43267890];Xk=fft(xn)Xk=39.0000 -10.7782+6.2929i 0-5.0000i 4.7782-7.7071i 5.00
2、00 4.7782+7.7071i 0+5.0000i-10.7782-6.2929iXk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。二、FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。clf;fs=100;N=128; %采样频率和数据点数n
3、=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');gridon;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振
4、幅xlabel('频率/Hz');ylabel('振幅');title('N=128');gridon;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag);%绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grido
5、n;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');gridon;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的幅频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,
6、振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:(1)数据个数N=32,FFT所用的采样点数NFFT=32;(2)N=32,NFFT=128;(3)N=136,NFFT=128;(4)N=136,NFFT=512。clf;fs=100;%采样频率Ndata=32;%数据长度N=32;%FFT的数据长度n
7、=0:Ndata-1;t=n/fs; %数据对应的时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号y=fft(x,N); %信号的Fourier变换mag=abs(y); %求取振幅f=(0:N-1)*fs/N;%真实频率subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N);%绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');titl