二次函数的图像与性质与练习

二次函数的图像与性质与练习

ID:47405699

大小:911.00 KB

页数:12页

时间:2020-01-10

二次函数的图像与性质与练习_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《二次函数的图像与性质与练习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、....二次函数的图像与性质一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。【说明】这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2.二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1.二次函数基本形式:的性质:a的绝对值越大,抛物线的开口越小。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2.的性质:上加

2、下减。的符号开口方向顶点坐标对称轴性质.word资料可编辑.....向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3.的性质:左加右减。的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4.的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.word资料可编辑......5.二次函数的性质1

3、.当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.三、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”..word资料可编辑.....方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(

4、或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数解析式的表示方法1.一般式:(,,为常数,);2.顶点式:(,,为常数,);3.两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.六、二次函数的图象与各项系数之间的关系1.二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开

5、口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数.word资料可编辑.....在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同

6、右异”总结:3.常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负./总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.4.利用二次函数与轴的交点的个数来确定判别式的符号,利用特殊点的坐标确定特殊代数式的值的范围。有时还要利用等量代换来判断特殊代数式的值的范围。.word资料可编辑.....二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的

7、特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.二次函数的图像与性质应用举例:例1:小强从如图所示的二次函数的图象中,观察得出了下面五条信息:(1);(2);(3);(4);(5).你认为其中正确信息的个数有(C)A.2个B.3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。