Euler–Lagrange equation

Euler–Lagrange equation

ID:47400766

大小:280.50 KB

页数:10页

时间:2019-07-05

Euler–Lagrange equation_第1页
Euler–Lagrange equation_第2页
Euler–Lagrange equation_第3页
Euler–Lagrange equation_第4页
Euler–Lagrange equation_第5页
资源描述:

《Euler–Lagrange equation》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Euler–LagrangeequationFromWikipedia,thefreeencyclopediaJumpto:navigation,searchIncalculusofvariations,theEuler–Lagrangeequation,orLagrange'sequation,isadifferentialequationwhosesolutionsarethefunctionsforwhichagivenfunctionalisstationary.Itwasdevelop

2、edbySwissmathematicianLeonhardEulerandItalianmathematicianJosephLouisLagrangeinthe1750s.Becauseadifferentiablefunctionalisstationaryatitslocalmaximaandminima,theEuler–Lagrangeequationisusefulforsolvingoptimizationproblemsinwhich,givensomefunctional,o

3、neseeksthefunctionminimizing(ormaximizing)it.ThisisanalogoustoFermat'stheoremincalculus,statingthatwhereadifferentiablefunctionattainsitslocalextrema,itsderivativeiszero.InLagrangianmechanics,becauseofHamilton'sprincipleofstationaryaction,theevolutio

4、nofaphysicalsystemisdescribedbythesolutionstotheEuler–Lagrangeequationfortheactionofthesystem.Inclassicalmechanics,itisequivalenttoNewton'slawsofmotion,butithastheadvantagethatittakesthesameforminanysystemofgeneralizedcoordinates,anditisbettersuitedt

5、ogeneralizations(see,forexample,the"Fieldtheory"sectionbelow).Contents1History·2Statement·3Exampleso3.1Classicalmechanics§3.1.1Basicmethod§3.1.2Particleinaconservativeforcefieldo3.2Fieldtheory·4Variationsforseveralfunctions,severalvariables,andhigher

6、derivativeso4.1Singlefunctionofsinglevariablewithhigherderivativeso4.2Severalfunctionsofonevariableo4.3Singlefunctionofseveralvariableso4.4Severalfunctionsofseveralvariableso4.5Singlefunctionoftwovariableswithhigherderivatives·5Notes·6References·7See

7、alsoHistoryTheEuler–Lagrangeequationwasdevelopedinthe1750sbyEulerandLagrangeinconnectionwiththeirstudiesofthetautochroneproblem.Thisistheproblemofdeterminingacurveonwhichaweightedparticlewillfalltoafixedpointinafixedamountoftime,independentofthestart

8、ingpoint.Lagrangesolvedthisproblemin1755andsentthesolutiontoEuler.ThetwofurtherdevelopedLagrange'smethodandappliedittomechanics,whichledtotheformulationofLagrangianmechanics.Theircorrespondenceultimatelyledtothecalculusofvariations,atermcoinedbyEuler

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。