Euler–Lagrange_equation

Euler–Lagrange_equation

ID:37929317

大小:269.50 KB

页数:9页

时间:2019-06-03

Euler–Lagrange_equation_第1页
Euler–Lagrange_equation_第2页
Euler–Lagrange_equation_第3页
Euler–Lagrange_equation_第4页
Euler–Lagrange_equation_第5页
资源描述:

《Euler–Lagrange_equation》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Euler–LagrangeequationJumpto:navigation,searchIncalculusofvariations,theEuler–Lagrangeequation,orLagrange'sequation,isadifferentialequationwhosesolutionsarethefunctionsforwhichagivenfunctionalisstationary.ItwasdevelopedbySwissmathematicianLeonhardEulerandItalianmathema

2、ticianJosephLouisLagrangeinthe1750s.Becauseadifferentiablefunctionalisstationaryatitslocalmaximaandminima,theEuler–Lagrangeequationisusefulforsolvingoptimizationproblemsinwhich,givensomefunctional,oneseeksthefunctionminimizing(ormaximizing)it.ThisisanalogoustoFermat'st

3、heoremincalculus,statingthatwhereadifferentiablefunctionattainsitslocalextrema,itsderivativeiszero.InLagrangianmechanics,becauseofHamilton'sprincipleofstationaryaction,theevolutionofaphysicalsystemisdescribedbythesolutionstotheEuler–Lagrangeequationfortheactionofthesys

4、tem.Inclassicalmechanics,itisequivalenttoNewton'slawsofmotion,butithastheadvantagethatittakesthesameforminanysystemofgeneralizedcoordinates,anditisbettersuitedtogeneralizations(see,forexample,the"Fieldtheory"sectionbelow).HistoryTheEuler–Lagrangeequationwasdevelopedint

5、he1750sbyEulerandLagrangeinconnectionwiththeirstudiesofthetautochroneproblem.Thisistheproblemofdeterminingacurveonwhichaweightedparticlewillfalltoafixedpointinafixedamountoftime,independentofthestartingpoint.Lagrangesolvedthisproblemin1755andsentthesolutiontoEuler.Thet

6、wofurtherdevelopedLagrange'smethodandappliedittomechanics,whichledtotheformulationofLagrangianmechanics.Theircorrespondenceultimatelyledtothecalculusofvariations,atermcoinedbyEulerhimselfin1766.[1]StatementTheEuler–Lagrangeequationisanequationsatisfiedbyafunctionqofare

7、alargumenttwhichisastationarypointofthefunctionalwhere:·qisthefunctiontobefound:suchthatqisdifferentiable,q(a)=xa,andq(b)=xb;·q′isthederivativeofq:TXbeingthetangentbundleofX(thespaceofpossiblevaluesofderivativesoffunctionswithvaluesinX);·Lisareal-valuedfunctionwithcont

8、inuousfirstpartialderivatives:TheEuler–Lagrangeequation,then,istheordinarydifferentialequationwhereLxandLvdenotethepa

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。