资源描述:
《2018届高考数学二轮复习大题专攻练三数列A组文新人教A版20180313233》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、添加微信:gzxxzlk或扫描下面二维码输入高考干货领取更多资料资料正文内容下拉开始>>高考大题专攻练3.数列(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.设数列的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,bn=-1-log2,数列的前n项和为Tn,cn=. (1)求数列的通项公式与数列前n项和An.(2)对任意正整数m,k,是否存在数列中的项an,使得≤32an成立?若存在,请求出正整数n的取值集合,若不存在,请说明理由.【解析】(1)因为an=5Sn+1,令n=1⇒a1=-,由得,an+1=-an,所
2、以等比数列{an}的通项公式an=,bn=-1-log2
3、an
4、=2n-1,更多资料关注公众号:高中学习资料库==-,所以An=1-=.(2)存在.因为an=⇒Sn==-.所以S1=-,S2=-,当n为奇数,Sn=-单增,n为偶数,Sn=-单减,所以(Sn)min=-,(Sn)max=-,设对任意正整数m,k,存在数列{an}中的项,使得
5、Sm-Sk
6、≤32an成立,即(Sn)max-(Sn)min==≤32an=32·,解得:n∈{2,4}.2.已知数列{an}满足a1=1,an+1=1-,其中n∈N*.(1)设bn=,求证:数列
7、{bn}是等差数列,并求出{an}的通项公式an.(2)设cn=,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.更多资料关注公众号:高中学习资料库【解析】(1)因为bn+1-bn=-=-=-=2,所以数列{bn}是公差为2的等差数列,又b1==2,所以bn=2+(n-1)×2=2n.所以2n=,解得an=.(2)存在.由(1)可得cn==,所以cncn+2=×=2,所以数列{cncn+2}的前n项和为Tn=2[+++…+(-)+(-)]=2<3.要
8、使得Tn<对于n∈N*恒成立,只要3≤,即≥3,解得m≥3或m≤-4,而m>0,故m的最小值为3.更多资料关注公众号:高中学习资料库