高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2

高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2

ID:47273006

大小:153.13 KB

页数:5页

时间:2019-09-02

高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2_第1页
高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2_第2页
高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2_第3页
高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2_第4页
高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2_第5页
资源描述:

《高中数学23圆的方程231圆的标准方程课堂探究新人教B版必修2》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2.3.1圆的标准方程课堂探究探究一直接法求圆的标准方程⑴①由圆的标准方程(x-a)2+(y-b)2=r2可知,圆心为(a,b),半径为r,它体现了圆的几何性质;②圆的标准方程(x-a)2+(y-b)2=r24J有三个参数a,b,r,只要求出a,b,r,圆的方程也就确定了,因此确定圆的方程需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.(2)几种特殊形式的圆的标准方程条件方程形式圆心在原点x2+y2=r2(r^O)过原点(x—a)2+(y—b)2=a2+b2(a2+b27^0)圆心在X轴上(x—a)2+y2=r2(r^

2、O)圆心在y轴上x2+(y—b)2=r2(r^O)圆心在X轴上且过原点(x—a)z4-y2=a2(aHO)圆心在y轴上且过原点x2+(y—b)2=b2(bHO)与x轴相切(x—a)2+(y—b)'=b'(bHO)与y轴相切(x—a)2+(y—b)2=a2(a^0)与两坐标轴都相切(x—a)2+(y—b)2=a2(

3、a

4、=

5、b

6、HO)【典型例题1】(1)圆心是C(—3,4),半径长为5的圆的方程为()A.(x-3)2+(y+4)2=5B.(x-3)2+(y+4)2=25C.(x+3)2+(y—4)2=5D.(x+3)2+(y—4)2

7、=25解析:因为圆心是C(-3,4),半径长为5,所以圆的方程为(x+3)2+(y-4)2=25.答案:D(2)已知点A(-4,-5),B(6,-1),则以线段AB为直径的圆的方程为.解析:AB的中点坐标即为圆心坐标C(l,-3),又圆的半径r=

8、AC

9、=返,所以所求圆的方程为(x-l)2+(y+3)2=29.答案:(x-l)2+(y+3)2=29探究二待定系数法求圆的标准方程1.待定系数法求圆的标准方程,需求出圆心和半径,即列出关于a,b,r的方程组,求出a,b,r.一般步骤如下:(1)根据题意,设所求的圆的标准方程为(x-a)

10、2+(y-b)2=r2;(2)根据已知条件,建立关于a,b,r的方程组;(1)解方程组,求出a,b,r,代入圆的方程中,求出圆的标准方程.1.有时求圆的方程时,用上初中所学圆的几何性质往往使问题容易解决.圆的常用几何性质如下:(1)圆心在过切点,且与切线垂直的直线上;(2)圆心必是两弦屮垂线的交点;(3)不过圆心的弦,弦心距d,半弦长ni及半径r满足r2=d2+m2;(4)直径所对的圆周角是90°,即圆的直径的两端点与圆周上异于端点的任意一点的连线互相垂直.【典型例题2】一个圆经过两点A(10,5),B(-4,7),半径为10,求

11、圆的方程.思路分析:本题考查了圆的标准方程的求解,可根据题目中的条件,利用待定系数法求解.解法一:设圆心为(a,b),则[(—10)2+(/7—5)2=100,①、[@+4)2+9-7)2=100.②①一②整理得7a—b—15=o,即b=7a-15.③将③代入①得a2-6a+8=0,[ci=2,[ci=4,所以补或L;[b=-[b=13・故所求圆的方程为(x-2)2+(y+l)2=100或(x—4)?+(y-13)2=100.解法二线段AB的中点坐标为(3,6),则线段AB的垂直平分线方程为y—6=7(x—3),即y=7x—15

12、・设圆心为(a,b),由于圆心在AB的垂直平分线上,所以b=7a—15.③又因为(a-10)2+(b-5)2=100,④将③代入④可得a=2或a=4.(以下同解法一)【典型例题3】求下列圆的方程:(1)圆心在直线y=—2x上,且与直线y=l—x相切于点(2,—1);⑵圆心C(3,0),且截直线y=x+1所得的弦长为4.(2)己知一个圆关于直线2x+3y—6=0对称,且经过点A(3,2),B(l,-4).思路分析:利用圆的标准方程,把条件转化为关于圆心和半径的方程组來求解.解:(1)设圆心为(a,-2a),半径为r,则圆的方程为(x

13、~a)2+(y+2a)2=r2.-2g+1a-2解得r—-2)~+(-2°+1)?,a=1,r=V2,所以所求圆的方程为(X—l『+(y+2)2=2.(2)设圆的半径为r,则圆的方程为(x-3)2+y2=r2,利用点到直线的距离公式可以求得211d2-所以所求圆的方程为(x-3)2+y2=12.⑶AB的垂直平分线为y+1=—上1(x-2),即x+3y+l=0.2+4因为圆心在弦AB的垂直平分线上,也在对称轴上,兀=72x+3y-6=0,,则由得48兀+3y+l=0,y=——.、3(QA即圆心为所以半径为、(7_3)2+2VI3丿(

14、q340所以圆的方程为(x-7)2+y+-=沖・I3丿9探究三点与圆的位置关系判断点P(x«,y。)与圆(x-a)2+(y-b)2=r2的位置关系有几何法和代数法两种:(1)对于儿何法,主要是利用点与圆心的距离与半径比较大小;(2)对于代数法,主

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。