时间序列分析+基于ARIMA模型的城镇居民人均收入的预测

时间序列分析+基于ARIMA模型的城镇居民人均收入的预测

ID:47253971

大小:1.71 MB

页数:8页

时间:2019-08-31

时间序列分析+基于ARIMA模型的城镇居民人均收入的预测_第1页
时间序列分析+基于ARIMA模型的城镇居民人均收入的预测_第2页
时间序列分析+基于ARIMA模型的城镇居民人均收入的预测_第3页
时间序列分析+基于ARIMA模型的城镇居民人均收入的预测_第4页
时间序列分析+基于ARIMA模型的城镇居民人均收入的预测_第5页
资源描述:

《时间序列分析+基于ARIMA模型的城镇居民人均收入的预测》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.基于ARIMA模型的城镇居民人均收入的预测摘要:城镇居民可支配收入一向较为是反映人民生活水平和国内经济发展状况的重要指标,故对于城镇居民可支配收入的情况了解几何就显得尤为重要。在此对1980—2015年我国城镇居民人均可支配收入的数据进行训练集和检验集的划分处理后,运用SAS9.3统计软件建立了ARIMA(1,1,0)城镇居民人均可支配收入的拟合模型:。并预测2016年城镇居民人均的可支配收入为29284.77元,为政府部门提供了制定相关惠民政策的参考有着极为重要的作用。一、引言城镇居民可支配收入是指反映

2、居民家庭全部收入在能用于安排家庭日常生活支出的部分收入。随着经济的发展,国家财政在民生政策和民生福利上的不断加大投入,在此城镇居民的可支配收入就成为了一个非常重要的参考指标,可以用来衡量城镇居民的生活水平,从而是政府制定相关政策的重要依据。就目前而言国内针对城镇居民可支配收入的预测研究的文献主要采用两种预测方法平稳时间序列预测法和灰色预测法。一种是由著名学者邓聚龙教授提出的灰色预测系统理论,目前已经广泛应用到了经济、科教、工农业、气象、军事等领域,并取得了较好的预测效果。其中游中胜以重庆城镇居民家庭为例构造

3、了GM(1,1)的家庭人均可支配收入模型,并分别预测了2013—2015年的人均可支配收入。另一种则是通过建立ARIMA模型进行预测,通过对数据的处理分析最终得到较好的预测结果。文献有蒋琴莉利用ARIMA模型预测了我国城镇居民家庭人均可支配收入并提出建设性的政策意见。本文运用软件SAS9.3对《中国统计年鉴2016》1980—2015年我国城镇居民人均可支配收入的数据进行分析,此外,为了更好地检验数据的拟合效果,我们将数据分为训练集和检验集,并运用ARIMA模型对城镇居民可支配收入进行了预测。二、ARlMA

4、模型原理ARIMA模型全称为自回归移动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA),具有如下结构:(1)式中,;,为平稳可逆ARMA(P,q)模型的自回归系数多项式;,为平稳可逆ARMA(p,q)模型的移动平滑系数多项式。求和自回归移动模型这个名字的由来是因为d阶差分后序列可以表示为:式中,,即差分后序列等于原序列的若干序..列值的加权和,而对它又可以拟合自回归移动平均模型,所以称它为求和自回归移动平均模型。式(5.1)可以简记为:(2)式

5、中,为零均值白噪声序列。由式2容易看出,ARIMA模型的实质就是差分运算与ARMA模型的组合。这一关系意义重大。这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMA模型拟合了。而ARMA模型的分析方法非常成熟,这意味着对差分序列的分析也将是非常简单、非常可靠的。特别的,当d=0时,ARIMA(p,d,q)模型实际就是ARMA(p,q)模型。当p=0时,ARIMA(0,d,q)模型可以简记IMA(d,q)模型。当d=1,p=q=0时,ARIMA(0,1,0)模型为:(3)

6、该模型又称为随机游走模型。三、数据的介绍以及描述本文选取《中国统计年鉴2016》1980—2015年我国城镇居民人均可支配收入作为研究数据。通过利用SAS9.3软件对城镇居民人均可支配收入绘制时序图(如图1),可以清晰的了解到城镇居民人均可支配收入序列蕴含着曲线递增的长期趋势,是非平稳时间序列。图11980—2015年城镇居民人均可支配收入的时序图..3.1数据预处理为了更好地检验数据的拟合效果,我们将数据分为训练集和检验集。1980—2012年的数据作为训练集用于建模,余下3年数据作为检验集作为检验模型预

7、测能力好坏的标准。由于初步了解数据发现该序列呈现明显的上升趋势,为非平稳序列。且通过观察图形我们可以看出时序图呈指数函数上升的趋势,于是我们对该序列做对数变换,变换后的时序图(如图2)所示。图21980—2012年城镇居民人均可支配收入对数变换时序图图2显示,取对数后的时序图仍然蕴含着线性递增的趋势,还需要对该城镇居民人均可支配收入进行1阶差分运算来实现趋势平稳。结果如图3所示。图31980—2012年城镇居民人均可支配收入的1阶差分时序图..1阶差分后的序列不再呈现明显的趋势性,可以直观的初步确认该序列已

8、经平稳。四、ARIMA模型的建立4.1序列的平稳性检验与白噪声检验时序图显示该序列的信息基本被差分运算充分提取,为了进一步验证其平稳性,我们考察差分后序列的自相关图(如图4)。图41980—2012年城镇居民人均可支配收入的1阶差分后自相关图自相关图显示,延迟1阶之后,自相关系数具有明显的短期相关性,可以认为该差分后序列平稳。表1白噪声检验而对于白噪声的检验,我们由表1显示,在各阶延迟下LB检验统计量的P值在(a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。