欢迎来到天天文库
浏览记录
ID:47233300
大小:324.96 KB
页数:7页
时间:2019-08-28
《《对数函数》教学设计-(2924)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、--《对数函数》教学设计一、教材分析本小节选自《中等职业教育课程改革国家规划新教材-数学(基础模块上册)》第四章,主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于
2、形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。四、教学目标1.通过具体实例,直观了解对数函数模
3、型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特-----殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,-----培养学生运用函数的观点解决实际问题。五、教学重点与难点-----重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:如图1材料(多媒体)
4、:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,,,-----如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个,,,不难发现:-----分裂次数y就是要得到的细胞个数x的函数,即;-----图12.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出-----对数函数的定义:函数,且的定义域是(0,+∞).叫做对数函数,其中是自变量,函数-----注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,-----都不是对数函数.②对数函数对底数的限制:,且.3.根
5、据对数函数定义填空;例1(1)函数y=logax2的定义域是___________(其中a>0,a≠1)(2)函数y=loga(4-x)的定义域是___________(其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,选择从材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重
6、要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点](二)尝试画图、形成感知1.确定探究问题教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质。教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方法吗?学生2:先画图象,再根据图象得出性质。教师:画对数函数的图象是否象指数函数那样也需要分类?-----学生3:按和分类讨论教师:观察图象主要看哪几个特征?学生4:从图象的形状、位置、升降、定点等角度去识图教师:在明确了探究方向后,下面,按以下步骤共同探究对数函
7、数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象(2)用描点法在同一坐标系中画出下列对数函数的图象步骤二:观察对数函数、与、的图象特征,看看它们有那些异同点。步骤三:利用计算器或计算机,选取底数,且的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?步骤四:规纳出能体现对数函数的代表性图象。步骤五:作指数函数与对数函数图象的比较。2.学生探究成果(1)如图4—2、4—3较为熟练地用描点法画出下列对数函数,,,的图象-----图2-----图3(2)如图4—5学生选取底数=1
8、/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数是如何影响函数,且图象的变化。---
此文档下载收益归作者所有