资源描述:
《云南省2019年中考数学总复习 提分专练(四)二次函数小综合练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、提分专练(四) 二次函数小综合
2、类型1
3、 二次函数与方程(不等式)的综合1.已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
4、类型2
5、 二次函数与直线的综合2.[xx·北京]在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值
6、范围.
7、类型3
8、 二次函数与三角形的综合3.[xx·黄冈]已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线的两交点为A,B,O为原点,当k=-2时,求△OAB的面积.4.[xx·齐齐哈尔]如图T4-1,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠
9、0)的图象的顶点坐标为-,.图T4-1
10、类型4
11、 二次函数与平行四边形的综合5.如图T4-2,已知点A的坐标为(-2,0),直线y=-x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.图T4-2
12、类型5
13、 二次函数与相似三角形的综合6.在直角坐标系xOy中,A(0,2),B(-1,0),将△ABO经过旋转、平
14、移等变化后得到如图T4-3所示的△BCD.(1)求经过A,B,C三点的抛物线的解析式;(2)连接AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1∶3两部分,求此时点P的坐标.图T4-3参考答案1.解:(1)证明:证法一:∵(-2m)2-4(m2+3)=-12<0,∴方程x2-2mx+m2+3=0没有实数根.∴不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.证法二:∵a=1>0,∴该函数的图象开口向上.又∵y=x2-2mx+m2+3=(x-m)2+3≥3,∴该函数的图象在x轴的上方.∴不论m为何值,该函数的图象与x轴没有公共点
15、.(2)y=x2-2mx+m2+3=(x-m)2+3,把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此这个函数的图象与x轴只有一个公共点.∴把该函数的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.2.解:(1)∵直线y=4x+4与x轴、y轴分别交于点A,B,∴A(-1,0),B(0,4).∵将点B向右平移5个单位长度,得到点C,∴C(0+5,4),即C(5,4).(2)∵抛物线y=ax2+bx-3a经过点A,∴a-b-3a=0.∴b=-2a.∴抛物线的对称轴为直线x=-=-
16、=1,即对称轴为直线x=1.(3)易知抛物线过点(-1,0),(3,0).①若a>0,如图所示,易知抛物线过点(5,12a),若抛物线与线段BC恰有一个公共点,满足12a≥4即可,可知a的取值范围是a≥.②若a<0,如图所示,易知抛物线与y轴交于(0,-3a),要使该抛物线与线段BC只有一个公共点,就必须-3a>4,此时a<-.③若抛物线的顶点在线段BC上,此时顶点坐标为(1,4),从而解析式为y=a(x-1)2+4,将A(-1,0)代入,解得a=-1,如图所示:综上,a的取值范围是a≥或a<-或a=-1.3.解:(1)证明:联立两个函数,得x2-4x=kx+1,即x2-(
17、4+k)x-1=0,其中Δ=(4+k)2+4>0,所以该一元二次方程有两个不相等的实数根,即直线l与抛物线总有两个交点.(2)如图,连接AO,BO,联立两个函数,得x2-4x=-2x+1,解得x1=1-,x2=1+.设直线l与y轴交于点C,在一次函数y=-2x+1中,令x=0,得y=1,所以C(0,1),OC=1.所以S△ABO=S△AOC+S△BOC=·OC·
18、xA
19、+·OC·
20、xB
21、=·OC·
22、xA-xB
23、=×1×2=.4.解:(1)∵抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),∴解得