欢迎来到天天文库
浏览记录
ID:47171911
大小:69.50 KB
页数:14页
时间:2019-08-16
《2019年六年级数学下册教学反思 第1、2单元-新课标人教版小学六年级》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年六年级数学下册教学反思第1、2单元-新课标人教版小学六年级 圆柱在小学低年级学生就有所接触,是继五年级长方体、正方体之后的一种新的立体图形。在日常生活中应用广泛,是一个将数学知识运用于实际生活的典型。因此这节课的学习显得尤为必要,使学生明白数学知识来源于生活,又运用于生活,提高学生学习的兴趣。 上课伊始,图片显示建筑物,日常生活用品中的圆柱形,给学生一个震撼,了解圆柱在人们生活中的重要性。在实际生活中,虽然圆柱形的物体很多,学生对圆柱的认识都是感性认识,而课堂教学是对圆柱体进行理性的认识。学生对新知识是好奇的,所以
2、在教学时,动手操作和探索研究,自我发现和掌握圆的柱的基本特征,是本节课的主题。过后组织学生观察、触摸、猜测、操作验证、巩固、应用这几个环节组成。组织学生通过观察手中的圆柱实物,初步感知圆柱特征,是直观感知层面的活动中,对圆柱特征有一个较为完整的把握。再把圆柱放在平面上来了解,由实践上升到理论的层次,培养了学生的动手操作能力和空间想象能力、抽象思维能力。 圆柱侧面展开的学习我将它作为本节课的重点内容,它将影响圆柱侧面积和表面积的学习。认识到长方形与圆柱侧面积之间的关系。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发
3、现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。 在练习阶段,紧紧围绕新知我设计了针对性练习和发展性练习,在形式、难度、灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。 同时,在教学中也存在着一些不足:在学习圆柱的侧面展开与长方形各部分的关系时,学生对知识理解比较困难,演示不直观。 总之,我会吸取经验教训,弥补自己的不足,更好的进行数学知识的教学.《圆柱的表面积》教学反思 本课用课前预习课上小组内交流汇报的教
4、学方式组织教学,课前布置了《圆柱的表面积》预习提纲:1、什么是圆柱的表面积?2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?3、怎样求圆柱的侧面积?4、怎样求圆柱的底面面积?5、怎样求圆柱的表面积? 课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。
5、 但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,第一:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计
6、算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱体表面积的障碍。 针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。方法是这样的,每节课前我都会先给学生1分钟强化默默记忆的时间,接着采用游戏抢答的形式我提问学生抢答,学生兴趣浓,记忆效果较好,这样重复强化学生的记忆,在计算圆柱表面积的时候能够提高计算的正确率。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。第三:熟记常用数据。比如熟记了15到95的平方,同时也就能熟
7、记1.5到9.5的平方了,这样,如果给出的直径是一些单数,半径是1.5到9.5的数据,半径的平方也就能够比较快而准确地记住了,一定程度上也可以提高计算的正确率。 总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。《圆柱的体积》教学反思本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式V=Sh,猜想圆柱的
8、体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的实际问题。2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,
此文档下载收益归作者所有