欢迎来到天天文库
浏览记录
ID:47136769
大小:95.00 KB
页数:8页
时间:2019-08-11
《2019-2020年三年级数学 奥数讲座 枚举法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年三年级数学奥数讲座枚举法1. 如图9-1,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法? 解答:三数之和是9,不考虑顺序。1+2+6=9,1+3+5=9,2+3+4=9 答:有3种不同的取法。 2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法? 解答:两数之和大于10,不考虑顺序。8+7,8+6,8+5,8+4,8+3 7+6,7+5,7+4 6+5答:共有9种
2、不同的取法。 3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法? 解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23 答:一共有5种不同的支付方法。 4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?需要考虑吃的顺序不同。7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3 答:有8种不同的吃法。
3、 5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。问一共有多少种不同的订法? 解答:3个工厂各不相同,3数之和是300份,要考虑顺序。99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99 答:一共有7种不同的订法。6. 在所有的四位数中,各个数位上的数字之和等于34的数有多少个? 解答:4个数字之和是34,只有9+9+9+7=34,9+9+8+8=34,不同的数字
4、放在不同位是组成的四位数不同,考虑顺序。9997,9979,9799,7999;9988,9898,9889,8998,8989,8899 答:有10个。 7. 有25本书,分成6份。如果每份至少一本,且每份的本数都不相同,有多少种分法? 解答:1+2+3+4+5+10,1+2+3+4+6+9,1+2+3+4+7+8,1+2+3+5+6+8,1+2+4+5+6+7答:有5种分法。 8.小明用70元钱买了甲、乙、丙、丁4种书,共10册。已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、
5、11元,而且每种书至少买了一本。那么,共有多少种不同的购买方法? 解答:4种书每种1本,共3+5+7+11=26(元),70-26=44,44元买6本书 11×3+5×1+3×2,11×2+7×2+5×1+3×1,11×2+7×1+5×3,11×1+7×4+5×1 答:共有4种不同的购买方法。 9.甲、乙、丙、丁4名同学排成一行。从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?解答:不同的排法共有9种。 10.
6、abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系a<b,b>c,c<d的四位数abcd来。解答:若a最小:1324,1423;若c最小:2314,2413,3412 答:有5个:1324,1423,2314,2413,3412。 11. 一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。问一共有多少个这样的数? 解答:设两位数是AB,三位数是CDE,则AB*5=CDE。CDE能
7、被5整除,个位为0或5。若E=0,由于E+C=D,所以C=D;又因为CDE/5的商为两位数,所以百位小于5。当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495。答:一共有8个这样的数。 12.3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。现在25个小球,首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取球一次,其中穿1号衣的人取他手中球数的1倍,穿2
8、号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是多少? 解答:3人自己取走的球数是25-(1+2+3)19-2=17(个),17=3*4+2*1+1*3,所以,穿2号球衣的人取走手中球数1的3倍,这是甲。答:甲穿的运动衣的号码是2。 13.甲、乙两人打乒乓球,谁先胜两局谁赢;如果没有人连胜两局,则谁先胜三局谁赢,打到决出输赢为止。那么一共有多少种可能的情况? 解答:设甲胜为A,甲负为B
此文档下载收益归作者所有