应用时间序列实验报告材料

应用时间序列实验报告材料

ID:47048216

大小:339.37 KB

页数:35页

时间:2019-07-08

应用时间序列实验报告材料_第1页
应用时间序列实验报告材料_第2页
应用时间序列实验报告材料_第3页
应用时间序列实验报告材料_第4页
应用时间序列实验报告材料_第5页
资源描述:

《应用时间序列实验报告材料》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档河南工程学院课程设计《时间序列分析课程设计》学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:文案大全实用文档2017年6月2日考核项目考核内容得分平时考核(20分)出勤情况、实训态度、效率;知识掌握情况、基本操作技能、知识应用能力、获取知识能力实验一(20分)完成此实验并获得实验结果实验二(20分)完成此实验并获得实验结果实验三(20分)完成此实验并获得实验结果文档资料(20分)表达能力、文档写作能力和文档的规范性总评成绩指导教师评语:文案大全实用文档目录1.实验一澳大利亚常住人口变动分析11.1实验目的11.2实验原理11.3实验内容21.4实验过程32.

2、实验二我国铁路货运量分析8文案大全实用文档2.1实验目的82.2实验原理82.3实验内容92.4实验过程103.实验三美国月度事故死亡数据分析143.1实验目的143.2实验原理153.3实验内容153.4实验过程16课程设计体会19文案大全实用文档1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。表1-163.267.955.849.550.255.449.945.348.161.755.253.149.559.930.630.433.842.135.828.432.944.145.536.639.549.848.

3、82937.334.247.637.339.247.643.94951.260.86748.965.465.467.662.555.149.657.347.345.544.54847.949.148.859.451.651.460.960.956.858.662.16460.364.67179.459.983.475.480.255.958.565.269.559.121.562.5170-47.462.26033.135.343.442.758.434.4(1)判断该序列的平稳性与纯随机性。(2)选择适当模型拟合该序列的发展。(3)绘制该序列拟合及未来5年预测序列图。1.1实验目的文案大全实

4、用文档掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。1.2实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。1.3实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动

5、,而且波动的范围有界。如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。而单位根检验我们用到的是DF检验。以1阶自回归序列为例:该序列的特征方程为:特征根为:文案大全实用文档当特征根在单位圆内时:该序列平稳。当特征根在单位圆上或单位圆外时:该序列非平稳。对于纯随机性检验,既白噪声检验,可以用SAS系统中的IDENTIFY语句来输出白噪声检验的结果。(2)选择适当模型拟合该序列的发展先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好

6、的模型进行显著性诊断。ARIMA过程的第一步是要IDENTIFY命令对该序列的平稳性和纯随机性进行识别,并对平稳非白噪序列估计拟合模型的阶数。使用命令如下:procprintdata=example3_20;IDENTIFYVAR=peoplenlag=8minicp=(0:5)q=(0:5);run;(3)绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进行短期预测。预测命令如下:forecastlead=5id=timeout=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入某个数据集。文案大全实用文档利用存储在临时数据

7、集RESULTS里的数据,我们可以绘制拟合预测图,相关命令如下:procgplotdata=results;plotpeople*time=1forecast*time=2l95*time=3u95*time=3/overlay;symbol1c=redi=nonev=star;symbol2c=blacki=joinv=none;symbol3c=greeni=joinv=nonel=32;ru

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。