高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版

高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版

ID:47028843

大小:458.50 KB

页数:11页

时间:2019-06-29

高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版_第1页
高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版_第2页
高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版_第3页
高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版_第4页
高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版_第5页
资源描述:

《高中数学第二章平面向量2.2从位移的合成到向量的加法2.2.1向量的加法教案北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.1向量的加法整体设计教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明.同时运用它们进行相关计算,这可让学生进一步加强对向量几何意义的理解,也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教

2、育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想.而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比,则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、

3、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点.因此本节的主要思想方法是类比思想、数形结合思想等.三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在探究活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的

4、和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,使学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力,初步体会向量内容与其他知识的交汇特点.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课思路1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并掌握了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路211.(问题导入)200

5、4年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?一位同学按以下的指令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题①数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?②猜想向量加法的法则是什么?与数的运算法则有什么不同?图1活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.在大型生产车间里,一重物被天车从A处般运到B处,它的实际位移,可以看作水平运动的分位移与竖直向

6、上运动的分位移的合位移.由分位移求合位移,称为位移的合成.由物理学知识我们知道,位移合成遵循平行四边形法则,即AB是以AC,AD为邻边的ACBD的对角线.数的加法启发我们,从运算的角度看,可以认为是与的和,即位移、力的合成看作向量的加法.讨论结果:①向量加法的定义:如图2,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫作a与b的和,记作a+b,即a+b=+=.图2求两个向量和的运算,叫作向量的加法.②向量加法的法则:1°向量加法的三角形法则已知向量a,b,在平面内任取一点A,作=a,=b,再作向量,则向量叫作向量a与b的和,这种求向量和的作图方法就是向量加法的三角形法则.运用这

7、一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量,如图2.位移的合成可以看作向量加法三角形法则的物理模型.11向量求和的三角形法则,可推广至多个向量求和的多边形法则:n个向量经过平移,顺次使前一个向量的终点与后一个向量的起点重合,组成一向量折线,这n个向量的和等于折线起点到终点的向量,即+…+.2°向量加法的平行四边形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。