课标理科数学第十章第五节古典概型

课标理科数学第十章第五节古典概型

ID:46972205

大小:846.50 KB

页数:44页

时间:2019-12-02

课标理科数学第十章第五节古典概型_第1页
课标理科数学第十章第五节古典概型_第2页
课标理科数学第十章第五节古典概型_第3页
课标理科数学第十章第五节古典概型_第4页
课标理科数学第十章第五节古典概型_第5页
资源描述:

《课标理科数学第十章第五节古典概型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五节 古典概型1.基本事件的特点(1)任何两个基本事件是________的.(2)任何事件(除不可能事件)都可以表示成___________的和.互斥基本事件2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.3.古典概型的概率公式P(A)=__________________________.1.在一次试验中,其基本事件的发生一定是等可能的吗?【提示】不一定等可能.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的.2.如何确定一个试验是否为古典概型?【提示】判断一个试验是否是古典概型,关键在

2、于这个试验是否具有古典概型的两个特征:有限性和等可能性.【答案】C【答案】A3.(2013·梅州调研)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.(2012·山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.【思路点拨】依题意,所求事件

3、的概率满足古典概型,分别求基本事件总数与所求事件所包含的基本事件个数m,进而利用古典概型概率公式计算.1.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.2.(1)用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,求选出的2名老师来自同一学校

4、的概率.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【思路点拨】首先求出省内、省外游客人数及持金卡、银卡人数,然后求出基本事件总数及所求事件包含的基本事件数,最后代入公式求解.1.本题属于求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成互斥事件或对立事件的概率.2.(1)在解决与互斥事件有关问题时,首先分清所求事件是哪些事件组成的,是否具备互斥的条件,一个事件是由几个互斥事件组成的,做到不

5、重、不漏.(2)在求基本事件总数和所求事件包含基本事件的数目时,要保证计数的一致性,用排列时都按排列计数;用组合时,均用组合计数.本例中条件不变,在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率.【解】由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件C为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,事件C1为“采访该团3人中,1人持金卡,0人持银卡”,事件C2为“采访该团3人中,1人持金卡,1人持银卡”.(2013·湛江质检)某日用品按行业质量标准分成五个等级,

6、等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.【思路点拨】

7、对于第(1)问,由频率分布表可得出a、b、c的关系a+0.2+0.45+b+c=1,再根据等级系数为4的恰有3件,等级系数为5的恰有2件的条件分别得出b,c的值,从而求出a的值.对于第(2)问,从日用品x1,x2,x3,y1,y2中任取两件结果等可能,为古典概型,利用公式就可求得结果.1.本题综合考查概率与统计的知识,数学应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想.2.(1)此类问题求解的关键是准确提炼数据信息,正确运算,注重思想方法的培养.(2)注重正反两方面的思维训练,提升自己的思维水平.(2012

8、·天津高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.1.列举法:适用于较简单的试验

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。