欢迎来到天天文库
浏览记录
ID:46941245
大小:90.00 KB
页数:21页
时间:2019-11-30
《初中数学备课教案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、(一)有理数1.有理数的概念有理数。数轴。相反数。数的绝对值。有理数大小的比较。具体要求:(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。2.有理数的运算有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法
2、运算律。有理数的乘方。有理数的混合运算。科学记数法。近似数与有效数字。具体要求:(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算(不超过6个数),灵活运用运算律简化运算。(2)了解倒数概念,会求有理数的倒数。(3)掌握大于10的有理数的科学记数法。(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五入法求有理数的近似数;会用计算器求一个数的平方与立方(尚无条件的学校可使用算表)。(5)了解有理数的加法
3、与减法、乘法与除法可以相互转化。(二)整式的加减代数式。代数式的值。整式。单项式。多项式。合并同类项。去括号与添括号。数与整式相乘。整式的加减法。具体要求:(1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式按某个字母降幂排列或升幂排列。(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以
4、及整式的加减运算(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。(三)一元一次方程等式。等式的基本性质。方程和方程的解。解方程。一元一次方程及其解法。一元一次方程的应用。具体要求:(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方程的解。(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。(3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能
5、够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。能够发现、提出日常生活或生产中可以利用一元一次方程来解决的实际问题,并正确地用语言表述问题及其解决过程。(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。(四)二元一次方程组二元一次方程及其解集。方程组和它的解。解方程组。用代入(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。一次方程组的应用。具体要求:(1)了解二元一次方程的概念,会把二元一次方程化为用一
6、个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。(3)灵活运用代入法、加减法解二元一次方程组,并会解简单的三元一次方程组。(4)能够列出二元、三元一次方程组解简单的应用题。能够发现、提出日常生活或生产中可以利用二元一次方程组来解决的实际问题,并正确地用语言表述问题及其解决过程。(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法
7、,从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。(五)一元一次不等式和一元一次不等式组1.一元一次不等式不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。具体要求:(1)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。(3)会用不等式的基本性质和移项法则解一元一次不等式。2.一元一次不等式组一元一次不等式组及其解法。
8、具体要求:(1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。(2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。(六)整式的乘除1.整式的乘法同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。平方差与完全平方公式:下一页 具体要求:(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则(其中
此文档下载收益归作者所有