欢迎来到天天文库
浏览记录
ID:46884115
大小:2.89 MB
页数:13页
时间:2019-11-28
《 浙江省金华十校2018届高三4月高考模拟考试数学试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.D【解析】本题选择D选项.2.C【解析】双曲线中,本题选择C选项.4.C【解析】由不等式组做出可行域,如图所示.令,则,显然过点时,;过点时,.即的取值范围为.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.5.A【解析】两函数的对称轴完全相同,则两函数的周期一致,据此有:,故,[来源:学科网]则,,且:,据此可得:为了得
2、到的图象,只需将的图象向左平移个单位长度.本题选择A选项.7.A【解析】因为,,成等差数列,,.则的最大值为.本题选择A选项.[来源:学科网ZXXK]8.D【解析】令,则方程化为,设它有解为,则求方程化为求方程及.由的图形(如图所示)关于直线对称,若方程及有解,则解,或有成对的解且两解关于对称,所以D选项不符合条件.本题选择D选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.[来源:Z。xx。k.Com]
3、[来源:学科网]10.B【解析】如图所示,作,取的中点,作平面于点,连结,平面,平面,则,且,据此有平面,结合线面垂直的定义可知:,则为二面角的平面角,由几何关系可知,点为抛物线的顶点,结合题意可知:,则:,即二面角平面角的余弦值为,本题选择B选项.点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.12.1【解析】[来源:学*科*网Z*X*X*K]13.402【解析】的二项展开式通项为,令得;令
4、得,再与相乘,可得的系数为在中,令得14.【解析】函数的解析式:∴函数f(x)的最小正周期∴当时,,当时,,但取不到.所以值域为.令,则,据此可知函数单调递减,,,即的取值范围是.16.40【解析】当排队顺序为男女男女男女时:若甲位于第一个位置,则乙位于第二个位置,余下四人的站法有种方法,若甲位于第三个位置,则乙有种位置进行选择,余下四人的站法有种方法,据此可得,排队顺序为男女男女男女时,不同的站法有种;同理,当排队顺序为女男女男女男时,不同的站法有种,综上可得,满足题意的站法有种.点睛:(1)解排列组合问题要遵循
5、两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.(1)当时,,,原问题等价于存在实数满足:,故,解得:,则此时;(2)当时,,,原问题等价于存在实数满足:,故,解得:,则此时;(3)当时,,而,当时,,原问题等价于存在实数满足:,故,
6、解得:,则此时;当时,,原问题等价于存在实数满足:,故,解得:,则此时;综上可得:实数的最大值为.点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.18.(Ⅰ)见解析;(Ⅱ).试题解析:(Ⅰ)由,有,展开化简得,,又因为,所以,由正弦定理得,;(Ⅱ)因为的面积,所以有,由(Ⅰ)知,代入上式得,①又由余弦定理有,代入①得,∴.19.(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)取中点,连接,,由几何关系可证得四边形是平行四边形,则,结
7、合线面平行的判断定理可得平面;(Ⅱ)结合几何关系,以,,所在直线为,,轴建立空间直角坐标系,由题意可得直线AB的方向向量为,设平面的法向量为,则直线与平面所成角的正弦值为.(Ⅱ)∵,平面平面,且交于,∴平面,由(Ⅰ)知,∴平面,又∵,为中点,∴,如图,以,,所在直线为,,轴建立空间直角坐标系,则,,,,∴,,,设平面的法向量为,则,即,令,得,∴直线与平面所成角的正弦值为.20.(Ⅰ)见解析;(Ⅱ).(Ⅱ)由(Ⅰ)知:①当时,;②当即时,;③当时,分类讨论有:当时,,∴;当时,,∴.据此可得若,则实数的取值范围为.
8、试题解析:(Ⅰ),①当时,恒成立,此时函数在上单调递增;②当时,令,得,∴时,;时,,∴函数的递增区间有,,递减区间有.③当时,,而在,递增,在上递减,∴.由,得,令,则,∴,即,∴,∴.∴当时,,∴;当时,,∴.综合①②③得:若,则实数的取值范围为.点睛:利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;函数的零点、不
此文档下载收益归作者所有