上海市2018届高三5月高考模拟练习(三)数学试题(解析版)

上海市2018届高三5月高考模拟练习(三)数学试题(解析版)

ID:46883029

大小:4.18 MB

页数:14页

时间:2019-11-28

 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)_第1页
 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)_第2页
 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)_第3页
 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)_第4页
 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)_第5页
资源描述:

《 上海市2018届高三5月高考模拟练习(三)数学试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2018年高考数学模拟练习3一、填空题.1.向量在向量方向上的投影为____________.【答案】.【解析】【分析】根据投影的计算公式进行计算.【详解】向量在向量的投影为,填.【点睛】一般地,向量在向量的投影为,而的几何意义就是向量在向量的投影与模的乘积.2.已知正数满足,则行列式的最小值为____________.【答案】3.【解析】【分析】行列式为,利用基本不等式可求最小值.【详解】.又,所以,当且仅当时等号成立,故,当且仅当取最小值,即的最小值为,填.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如

2、果原代数式中没有积为定值或和为定值,则需要对给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.3.阅读下边的程序框图,如果输出的函数值在区间,内,则输入的实数的取值范围是____________.【答案】.【解析】试题分析:流程图表示函数,因为输出的函数值在区间内,所以考点:流程图4.设是一元二次方程的两个虚根,若,则实数____________.【答案】4.【解析】【分析】求出方程的两个虚根,计算它们的乘积的模可得的值.【详解】,因为方程有两个虚根,所以.又原方程可化为,故两虚根为,两个

3、虚根为共轭复数,故,故,填.【点睛】对于实系数的一元二次方程,当时,方程有两个虚根且它们是一对共轭复数满足.5.集合,,若“”是“”的充分条件,则实数取值范围是____________.【答案】.【解析】【分析】由是充分条件得,故可求的取值范围.【详解】,当时,,因为“”是“”的充分条件,所以,故.填.【点睛】在充分条件和必要条件的判断中,注意数学语言叙述上的差异,比如:是的充分条件指若则是真命题,而的充分条件是则是若则是真命题.6.已知椭圆的焦点在轴上,一个质点为,其右焦点到直线的距离为3,则椭圆的方程为_______

4、______.【答案】.【解析】试题分析:据题意,椭圆方程是标准方程,,右焦点为,它到已知直线的距离为,,所以,椭圆方程为.考点:椭圆的标准方程.7.在中,所对边分别为,若,则____________.【答案】.【解析】【分析】利用正弦定理把边角混合关系化成关于角的三角函数的关系式,再把正切化成弦,整理后可得,解出即可.【详解】由正弦定理可得,故,通分得到,.因为,所以,故即.因为,故,填.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.

5、8.已知数列的首项,其前项和为,若,则____________.【答案】.【解析】【分析】先求出的通项,再求的通项.【详解】因为,所以.因为,故,所以,是等比数列,公比为,首项为,故,所以.填.【点睛】一般地,与之间的关系是,我们常常用这个关系实现与之间的转化.9.某地球仪上北纬纬线长度为,该地球仪的表面上北纬东经对应点与北纬东经对应点之间的球面距离为____________(精确到0.01)【答案】6.21.【解析】【分析】先根据北纬的纬线长为得到地球仪的半径及的长度,再利用余弦定理算出球心与连线的夹角的余弦值,利用弧

6、长公式可求球面距离.【详解】设地球仪的球心为,因为北纬的纬线长为,纬线所在的小圆的半径为,所以.又地球仪的半径为,所以,所以之间的球面距离为.【点睛】对于球面上两点间的球面距离的计算,关键是球心与两点的连线的夹角的大小计算,可利用纬线长、纬度及两点所在的经度计算的长度,再利用余弦定理算出的大小.10.已知直线与抛物线相交于两点,为抛物线的焦点,若,则实数____________.【答案】.【解析】【分析】直线过点,抛物线的准线为,根据抛物线几何性质可知到准线的距离与到准线的距离之比为,故而为的中点,设,则可求的坐标,从而

7、得到的值.【详解】设,为抛物线的准线方程,过点分别作准线的垂线,垂足为,则,,所以,所以.设,则,故,解得,故.填.【点睛】圆锥曲线中与焦点或准线有关的问题,可以考虑利用其几何性质来处理.如抛物线上的点到焦点的距离可以转化为到准线的距离,椭圆上的点到一个焦点的距离可以转化到另一个焦点的距离,也可以转化到相应准线的距离.11.将的图像向右平移2个单位后得曲线,将函数的图像向下平移2个单位后得曲线,与关于轴对称,若的最小值为,且,则实数的取值范围为____________.【答案】.【解析】试题分析:首先应求出的表达式,曲线

8、对应的函数式为,曲线与关于轴对称,因此的函数解析式为,向上平移2个单位,就是函数的图象,则.,其最小值大于,说明函数的最小值大于.下面观察函数,若,则当时,,无最小值,同理当时,时,,无最小值,因此,,当且仅当时等号成立,即最小值为,从而,解得.考点:图象的变换,函数的最小值,解不等式.12.已知“”为“”的一个全排

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。