欢迎来到天天文库
浏览记录
ID:46557631
大小:61.50 KB
页数:7页
时间:2019-11-25
《数学教学中培养学生探究意识的实践与思考》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学教学中培养学生探究意识的实践与思考上海市奉贤中学宋林荣新的数学课程标准在课程理念第二条明确指出:充分关注数学课程屮的学习过程。在提侣研究性学习的今犬,教师应当明确研究性学习旨在培养学生的创新能力和实践能力。探究性学习即学牛在教师所创设的学习情景•中,主动探索发现问题,并通过观察、分析、类比、归纳、猜想、证明,或通过调查研究、动手操作、表达与交流等探究性活动解决问题,获得知识、技能和态度的学习方式和学习过程。在指导学生探究方法的同时,更要重视培养学生探究意识,使学生具有严谨的治学态度和创新人格。本文结合笔者的数学教学实践,谈谈
2、培养学生探究的意识的途径,旨在改善学生学习的方式。一、在概念学习屮培养学生探究意识数学概念是反映现实世界空间形式和数量关系本质属性的思维形式。传统的数学概念的教学往往满足于学牛明确数学概念的内涵和外延,而忽视数学概念形成过程中的探究意识的培养。如直线与平面所成角概念的教学,一般通过创设情景,再抽象为数学模型,继而严格定义斜线与它在平面内的射彫所成的锐角(并补充说明线而垂直、平行以及直线在平面内悄况所成角)即为直线与平而所成角。学生似乎明确了线面角概念,但好动脑筋的学生总想知道这么多的线线角,偏偏为何选这个角?除了这个“最小角”,
3、还有没有更合适的角可以定义为直线与平面所成角?教师作为学习的引导者,应该明确引入肓线与平而所成角,需要解决必要性、合理性和唯一性°学生既然有这样的想法,老师何不让学生探究一下呢?这是培养学生探究意识的最佳吋机,学生也容易踏上探究“直线与平而所成角概念形成”Z“路”。二、在建立定理屮培养学生探究意识如在建立正弦定理过程中,课木上直接利用三角形的面积公式得出结论,即将等式-besinA=-acsinB=-absinC中等号分开的式子都除以除以丄abc,得到2222sinA=sinB=sinC^即二亠。作为教材,这样编写无可非议。但作
4、为教学设abcsinAsinBsinC计者,站在培养学生的探究意识的角度考虑,可以设置一些探究的悄景。如先让学生用三角板任意呦一个三角形,然后考察每一条边的边长与它所对的角的正弦值比的情况,并将测量得到的数据填入预先准备好的衣格内,通过数据,学生能够得岀初步的结论:」一二卫一二_二。再计学牛:sinAsinBsinC尝试、探究如何去证明正弦定理。这样设计,既确保了学生的参与意识和尝试体验的过程,也激发起学生的探究的欲望。三、在推导公式中培养学生探究意识公式是用字母和符号表达的命题,是定理的另一种表述形式。在公式的教学中,往往注重
5、公式的形式,似乎这是前人的成果,后人只耍理解、证明并会用就行了。其实,一个公式的发现,往往伴随着前人的付出和汗水。诚然,我们的教学并不要求学生再去仿效前人。如基本不等式a2+b2>2ab(其屮a、beR)的推导。虽然我们用演绎的方法可以轻松地推导这个不等式。即因为(a+b)2>0,所以a2+b2-2ab>0,从而a2+b2>2ab(其屮a、bwR)。不禁要问,这样的教学过程,学生究竟获得了什么?我们是否搭建一个平台,增加一些推导公式的探究味,让学生去探究一番呢?不妨可以这样去设计教学:给出关于a和b的若干组数据,让学生动手计算,
6、从中发现规律,得出不等式a2+b2>2ab(其屮a、bwR)。教师再顺水推舟,激励学生去证明这个不等式。公式的记忆和运用固然重要,但获得这样探究的经历比什么都重要。乂如在三角比诱导公式教学中如下的教学设计和教学过程,不失为培养学生探究意识的很好的途径。首先提出如何求sin150°的值?冇学生利用计算器容易得出sin150°=-,又冇学生在角150°2的终边上叹一点P,使得10Pl=lo则可得点P的处标o利用任意角的三角比定义since=丫22r可求得sinl50°=-o教师接着问sin150°的值与你所知道的哪一个三角比值相等?
7、冇学生提出与2sin30°的值相等,即sin150°=sin30°,也有学生提出与cos60°的值相等,即sin150°=cos60°。教师追问:角150°与30°,以及角150°与60°之间的数量有何关系?三角比之间又有何关系?学生得出:sin150°=sin(l80°-30°)=sin30°和sin150°=sin(90°4-60°)=cos60°,紧接着问:对于任意角a,我们可以猜想出一个什么样的结论?学牛得出sin(180c-a)=sina和sin(90°+a)=cosao教师不失时机地问学生如何去证明这些结论?教师这样
8、的引导质疑,激起了学生的求知欲,学生们积极参与,都想通过口身的努力,得到许多书本上要学习的结论,甚至得到书本上没有而有实用价值的一些结论。同时学生们也学会了如何用已有知识去探求未知的内容,提高了学生探究的兴趣。再如,学生已经掌握了三角形的面积公式:S=-absi
此文档下载收益归作者所有