欢迎来到天天文库
浏览记录
ID:46530458
大小:571.40 KB
页数:12页
时间:2019-11-24
《2019年天津卷高考试题 理数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、普通高等学校招生全国统一考试数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3-5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:·如果事件、互斥
2、,那么.·如果事件、相互独立,那么.·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高.·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A.B.C.D.·12·2.设变量满足约束条件则目标函数的最大值为A.2B.3C.5D.63.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出的值为A.5B.8C.24D.29·12·5.已知抛物线的焦点为,准线为,若与双曲线的两
3、条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.6.已知,,,则的大小关系为A.B.C.D.7.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则A.B.C.D.8.已知,设函数若关于的不等式在上恒成立,则的取值范围为A.B.C.D.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二.填空题:本大题共6小题,每小题5分,共30分.9.是虚数单位,则的值为.·12·10.是展开式中的常数项为.11.已知
4、四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.12.设,直线和圆(为参数)相切,则的值为.13.设,则的最小值为.14.在四边形中,,点在线段的延长线上,且,则.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,
5、且任一同学每天到校情况相互独立.(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;·12·(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.17.(本小题满分13分)如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.18.(本小题满分13分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与
6、轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19.(本小题满分14分)·12·设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.20.(本小题满分14分)设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D2.C3.B4.B5.D6.A7.A8.C二.填空题:本题考查基本知识和基本
7、运算.每小题5分,满分30分.·12·9.10.11.12.13.14.三.解答题15.本小题主要考查同角三角函数的基本关系,两角和正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力,满分13分.(Ⅰ)解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.(Ⅱ)解:由(Ⅰ)可得,从而,,故,16.本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:因为甲同学上学期间的三天中到校情况相互
8、独立,且每天7:30之前到校的概率均为,故,从而.·12·所以,随机变量的分布列为0123随机变量的数学期望.(Ⅱ)解:设乙同学上学期间的三天中7:30之前到校的天数为,则,且.
此文档下载收益归作者所有