资源描述:
《等腰三角形的性质课件用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.3.1等腰三角形的性质(1)(课本P49页)如图.把一张长方形纸片按图中的虚线对折,并剪去阴影部分,再把它展开,得△ABC,活动1:实践观察,认识三角形ACDBAC和AB有什么关系?这个三角形有什么特点?探索:定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,腰腰另一条边叫做底边.底向同学们出示精美的建筑物图片腰腰底相关概念:角:等腰三角形中,两腰的夹角叫做顶角,顶角腰和底边的夹角叫做底角.底角有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰底边顶角底角底角认识等
2、腰三角形ABCD如图:在三角形ABC中,AB=AC,且AD=BD,请大家数一数,这个图形中一共有多少个等腰三角形?△ABC(AB=AC),△ADB(AD=BD)若将条件改为AD=BD=BC,则有多少个等腰三角形?△ABC(AB=AC)△ADB(AD=BD)△BDC(BD=BC)讨论:除了剪纸的方法,还可以怎样作(画)出一个等腰三角形?在你作(画)出的等腰三角形中,指明它的腰,底边,顶角的底角。活动2:探索等腰三角形性质讨论:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三
3、角形的对称轴吗?底边上的高所在的直线呢?你能发现等腰三角形有什么性质吗?说一说你的猜想.性质1:等腰三角形的两底角相等。(简写成“等边对等角”)CBA性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)ABCD⌒⌒1212性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合在△ABC中,AB=AC,点D在BC上1、∵AD⊥BC∴∠=∠,____=。2、∵AD是中线,∴⊥,∠=∠。3、∵AD是角平分线,∴⊥,=。112BDDCADBC12ADBCBDDC用符号语言表示为:等腰三角形是轴对称图形.对称轴是底边上的中线(顶角平分线,底边上的高)
4、所在直线ABCD⌒⌒1212性质1:等腰三角形的两底角相在△ABC中,∵AC=AB()∴∠B=∠C()已知等边对等角CBA练习1:如图(1)在等腰△ABC中,AB=AC,∠A=36°,则∠B=——∠C=—变式练习:1、如图(2)在等△ABC腰中,∠A=50°,则∠B=——,∠C=——2、如图(3)在等△ABC腰中,∠A=120°则∠B=——,∠C=——CBA图1CBA图2CAB图3活动3:反馈练习36°36°65°65°30°30°练习2:(1)、等腰三角形的两边长分别为2和7,则它的周长是—————(2)、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为————
5、——例1.在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数解:AB=AC,BD=BC=AD,∠ABC=∠C=∠BDC∠A=∠ADD(等边对等角)设A=x,则∠BDC=∠A+∠ABD=2x从而∠ABC=∠C=∠BDC=2x于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=1800.解得x=360在△ABC中,∠A=360∠,ABC=∠C=720BCAD活动3:等腰三角形性质定理的运用等腰三角形的性质1等腰三角形的两个底角相等(等边对等角)2等腰三角形顶角的平分线,底边上的中线和底边上的高互相重合(等腰三角形三线合一)例2在三角形ABC中,AB=AC,
6、且AD⊥BC,已知BD=2cm,求DC=___cm,BC=___cm?CBDA12∵AD⊥BC(已知)∴BD=CD(等腰三角形的高与底边上的中线重合)即(等腰三角形三线合一)∵BD=2cm(已知)∴CD=2cmCBDA12等腰三角形的性质1等腰三角形的两个底角相等(等边对等角)2等腰三角形顶角的平分线,底边上的中线和底边上的高互相重合(等腰三角形三线合一)例3在三角形ABC中,AB=AC,且AD⊥BC,已知∠1=20°,求∠2=_____度∠A=______度?∵AD⊥BC(已知)∴∠1=∠2(等腰三角形的高与顶角的平分线重合)即(等腰三角形三线合一)∵∠1=20°(已知)∴∠A=40°
7、练习2:△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,图中有哪些相等的线段?练习3:在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数BACDBDCA摩拳擦掌课堂小结等腰三角形的性质等腰三角形三线合一1、求有关等腰三角形的问题,作顶角平分线、底边中线,底边的高是常用的辅助线;2、熟练掌握求解等腰三角形的顶角、底角的度数;3、掌握等腰三角形三