回归分析简答题

回归分析简答题

ID:46400401

大小:79.00 KB

页数:5页

时间:2019-11-23

回归分析简答题_第1页
回归分析简答题_第2页
回归分析简答题_第3页
回归分析简答题_第4页
回归分析简答题_第5页
资源描述:

《回归分析简答题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1、作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系?答:作多元线性回归分析时,口变量与因变量Z间的影响关系不一定是线性形式。当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做冋归分析。多元线性回归分析的线性关系指的是随机变量间的关系,因变量y与回归系数Pi间存在线性关系。多元线性回归的条件是:(1)各自变量间不存在多重共线性;(2)各自变量与残差独立;(3)各残差间相互独立并服从正态分布;(4)Y与每一自变量X有线性关系。2、回归分析的基本思想与步骤基本思想:所谓回归分析,是在掌握大量观

2、察数据的基础上,利用数理统计方法建立因变量与口变量之间的冋归关系函数表达式(称冋归方程式)。冋归分析中,当研究的因果关系只涉及因变量和一个自变量吋,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述口变量与因变量Z间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性冋归问题可以借助数学手段化为线性冋归问题处理。步骤:1)确定冋归方程小的解释变量和被解释变量。2)确定回归模型根据函数拟合方式,通过观察散点图确定应通过哪种数学模型來描述回归线。如果被解释变量和

3、解释变量Z间存在线性关系,则应进行线性回归分析,建立线性冋归模型;如果被解释变量和解释变量之间存在非线性关系,则应进行非线性回归分析,建立非线性回归模型。3)建立回归方程根据收集到的样本数据以及前步所确定的回归模型,在一定的统计拟合准则下估计出模型屮的各个参数,得到一个确定的回归方程。4)对冋归方程进行各种检验由于回归方程是在样本数据基础上得到的,回归方程是否真实地反映了事物总体间的统计关系,以及回归方程能否用于预测等都需要进行检验。5)利用回归方程进行预测3、多重共线性问题、不良后果、解决方法多重共线性是指线性回归模型中的自变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计

4、准确。常见的是近似的多重共线性关系,即存在不全为0的p个常数C

5、,C2,…,Cp使得CIXiI+C2Xi2+...+CpXip^0,i=l,2,-n不良后果:模型存在完全的多重共线性,则资料阵X的秩

6、XTX

7、^O,从而矩阵(XTX)"的主对角线上的兀素很大,使得估计的参数向量的协方差阵的对角线上的元索也很大,导致普通最小二乘参数估计量并非有效。检验方法:方差扩大因子(VIF)法和特征根判定法方差扩大因子表达式为:VIFi=l/(l-Ri2),其中&为自变量xi对其余自变量作冋归分析的复相关系数。当VIFi很

8、大时,表明自变量间存在多重共线性。解决方法:当发现口变量存在严重的多重共线性时,可以通过剔除一些不重要的自变量、增大样木容量、对回归系数做有偏估计(如采用岭回归法、主成分法、偏最小二乘法等)等方法來克服多重共线性。4、为什么要进行回归方程的显著性检验?答:对于任意给定的一组观测数据(xil,xi2,..・,xip;yi),(i=l,2,...,n),我们都可以建立回归方程。但实际问题很可能y与自变量xl,x2,.・・,xp之间根本不存在线性关系,这时建立起来的回归方程的效果一定很茅,即回归值yi实际上不能拟合真实的值yi。即使整个回归方程的效果是显著的,在多元的情况下,是否每个变量都起着显著的

9、作用呢?因此还需要对各个冋归系数进行显著性检验,对于冋归效果不显著的自变量,我们可以从回归方程屮剔除,而只保留起重要作用的自变量,这样可以使回归方程更简练。5、统计性的依据是什么?给出一个回归方程如何做显著性检验?统计性的依据是方差分析。对于多元线性回归方程作显著性检验就是要看口变量xl,x2,.・.xp从整体上对随机变量y是否有明显的影响,即检验假设H0:31=32=..=Pp=OHl:至少有某个BiHO,l<=i<=p如果HO被接受,则表明y与xl,x2,...xpZ间不存在线性关系,为了说明如何进行检验,我们首先要建立方差分析表。在进行显著性检验中,我们可以用F统计量來检验回归方程的显著

10、性,也可以用P值法做检验。F统计量是:F=MSR/MSE=[SSR/p

11、/[SSE/(n-p-1)]当HO为真时,F〜F(p,n・p・l)。给定显著性水平a,查F分布表得临界值Fl-a(p,n-p-1),计算F的观测值,若F0<=Fl-a(p,n-p-1),则接受HO,即认为在显著性水平a之下,认为y与xl,x2,・..xp之间线性关系不显著。利用P值法做显著性检验十分方便,这里的P值是P(F>F

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。