初中数学课堂实现知识“再创造”的策略初探

初中数学课堂实现知识“再创造”的策略初探

ID:46380834

大小:64.00 KB

页数:5页

时间:2019-11-23

初中数学课堂实现知识“再创造”的策略初探_第1页
初中数学课堂实现知识“再创造”的策略初探_第2页
初中数学课堂实现知识“再创造”的策略初探_第3页
初中数学课堂实现知识“再创造”的策略初探_第4页
初中数学课堂实现知识“再创造”的策略初探_第5页
资源描述:

《初中数学课堂实现知识“再创造”的策略初探》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、初中数学课堂实现知识“再创造”的策略初探数学教育中的“再创造”理念,是由荷兰数学家弗莱登塔尔提出来的•他批评传统的教学是“将数学作为一个现成的产品来教”、“只是一种模仿的数学”,因此他认为,“学习数学唯一正确的方法是实行'再创造',也就是由学生本人把要学的东西自己发现或创造出来”•这种“把知识作为培养学牛创造力载体”的教学思想,不仅还原了数学学习的本质,同时也指出了“知识再创造”是数学培养学生创新思维的主要路径•课堂作为教育教学的主阵地,是教师实施教学行为的主渠道•因此,要想在课堂上实现知识的再创造,教师就不能将已有的知识直接灌输给学生,而

2、应该把静态的知识体系转化为生动有趣、具有实际背景的活动探索,让学生在自主探索、合作交流、观察比较等实践活动屮,根据自己的体验,用自己的思维方式重新创造和演绎与所学知识有关的结论和命题,实现知识的再创造.1将知识转化为活动——启动知识的再创造前苏联数学家斯托利亚尔指出:数学教学是数学活动的教学•因此数学教学并不是单纯地将概念、定理和法则等冷冰冰的知识直接传授给学生,让学生生吞活剥地死记、机械模仿地巩固,而是将知识转化为一个个直观操作或现实有趣的活动,让学生在观察一猜想一验证一归纳一证明等思维过程中,自己去发现概念、定理和法则的形成.例如《相似

3、多边形》的概念就可创设如下活动:教室内的黑板,它内边缘的矩形与外边缘的矩形是形状相同的图形吗?由于这两个四边形直观上给人以形状相同的感觉,因此课堂上统计意见时,全班90%的人认为形状相同,只有少数儿个人感受到长宽比例的变化而认为形状不同,这个矛盾生动地诠释了直观感受不能作为判定两个图形形状相同的依据,必须从数学角度寻求更为严谨、可以量化的判定标准,这不仅使《相似多边形》数学定义的岀现成为学生认知的一种需求,同时矛盾的成囚也顺势成为探究定义中的第一步,知识再创造的大门就此拉开.山此可见,要想借活动启动知识再创造的大门,活动的创设和选择应满足以

4、下三个条件:(1)活动必须能激发每一位学生再创造的激情(愿学);(2)活动必须能科学有效地将知识导入课堂(该学);(3)学生认知结构屮具冇同化新知识的相应知识基础(能学).2将知识转化为问题——引导知识的再创造所谓将知识转化为问题就是教师课堂上结合具体的教学内容,将教师要讲的知识点,转化成具休的、递进的、有层次的问题•因此问题必须符合学情,而且能调动和拓展学生的思维,使学生通过独立思考,合作交流,查阅资料等能够进入真正的、深刻的、冇效的思维活动屮•否则,再创造的过程就会如浮光掠影、不能深入或陷入在紊乱无序的境界.例如,对于“黄金分割”的教学

5、,可将知识转化为以下问题:1.从图1的3张图片中选出构图最美的一张.图12•从图2、图3中选出芭蕾舞演员做相同的动作时,踮脚尖和不踮脚尖哪个更美?图2图33•将照片的宽度视为线段AB,将小鸟所在的位置为点C,则点C将线段AB分为两条线段AC和BC,请测量图4和图5屮AB、AC、BC的长,计算比值并填入表1(结果保留2个有效数字).5.观察表格,表1的数据Z间有什么关系?表2中的数据Z间有这样的关系吗?6.如果我们用上述比例式作为一个属性来定义黄金分割,你能给黄金分割下个定义吗?层层递进、环环相扣的问题不仅引导学生从“美与不美”的辨析走向数学

6、概念的思索,同时问题的开放度和指向性又让学生的感性认识、理性思索进行重组,迅速聚焦到知识创造的本质上來,课堂效率变得高效,由此可知,问题的设计须满足以下条件:1、是在学生最近发展区内出现的、现实的、客观的、学生冇兴趣的;2、是和活动屮某个环节知识有本质联系的;3、问题的展开和发展必须具有序列性;4、问题的解决是多渠道、多角度的;5、问题设计中隐含对解决方向的指引.3将知识转化为有效的生成——完善知识的再创造叶澜教授指出:“课堂就是向未知方向挺进的旅程,随时都有可能发生意外的通道和美丽的图景,而不是-切都必须遵循固定线路而没冇激情的行程•”因

7、此我们要对课堂上发生的“意外”倍加珍惜,课堂也常常因这种“意外”而使知识再创造的过程变得更加精彩.如,《分式的加减》一节中,我抛出一道113-114的题目,想通过“类比“去学习分式的加减•结果“意外”发生了,一位学生突然站起来说:“老师,我有一个方法,可以直接得到结果•”我说:“真的?(惊讶)说说你的方法”•他说:“我们小学老师说过,对于分子为1,分母为两个连续整数的分数进行减法运算时,它的结果分母为原分母的积,分子为原分母的差,所以本题的结果是1112.”我一听,非常欣喜,赶紧对其他同学说:“这个结论对吗?怎么说明它是正确的?如果分母不是

8、两个连续的整数,而是两个连续的奇数,分子仍是1,那还有巧办法吗?如果分母是两个连续的偶数,结果又会怎样呢?如果分母是连续相差3的整数,又会怎样呢?……?”一连串的问题将同学们的兴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。