牛顿迭代法论文

牛顿迭代法论文

ID:46253481

大小:51.28 KB

页数:10页

时间:2019-11-22

牛顿迭代法论文_第1页
牛顿迭代法论文_第2页
牛顿迭代法论文_第3页
牛顿迭代法论文_第4页
牛顿迭代法论文_第5页
资源描述:

《牛顿迭代法论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、南昌工程学院课程设计姓名:专业:年级:学号:年月日牛顿迭代算法摘要:牛顿迭代法(Newton'smethod)又称为牛顿-拉夫逊方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是求方程根的重要方法z—,其最大优点是在方程f(x)二0的单根附近具冇平方收敛,而且该法述可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计

2、算机编程屮。牛顿迭代法是一个重要的计算方法和思想。牛顿迭代法的主要功能:计算方程时可以比较快速方便的计算出来结果但并不影响计算出来结杲的精确度,运用于多种工业设计和数学设计方面.关键字:牛顿迭代方程根算法_・4W代法简介1.1牛顿迭代法的概述牛顿迭代法(Newton'smethod)乂称为牛顿-拉夫逊方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的

3、泰勒级数的而面几项來寻找方程f(x)=0的根。设r是f(x)=0的根,选取xO作为r初始近似值,过点(xO,f(xO))做曲线y=f(x)的切线L,L的方程为y=f(xO)f'(xO)(x-xO),求出L与x轴交点的横坐标xl二xO-f(xO)/f‘(xO),称xl为r的一次近似值。过点(xl,f(xl))做曲线y二f(x)的切线,并求该切线与x轴的横坐标x2二xl-f(xl)/f'(xl),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+l)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似

4、值,上式称为牛顿迭代公式。解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在xO点附近展开成泰勒级数f(x)=f(x0)+(x—xO)f'(x0)+(x—xO厂2*f''(x0)/2!+…取其线性部分,作为非线性方程f(x)二0的近似方程,即泰勒展开的前两项,则冇f(xO)+f1(xO)(x-xO)=f(x)=0设f'(xO)HO则其解为xl=xO-f(xO)/f,(xO)这样,得到牛顿法的一个迭代序列:x(n+l)=x(n)-f(x(n))/f,(x(n))o1.2牛顿迭代法的优点迭代法是求方程近

5、似根的一个重要方法,也是计算方法中的一种基本方法,它的算法简单,是用于求方程或方程组近似根的一种常用的算法设计方法。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)二0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。牛顿法是方程求根的一个有力方法,常常能快速求出其他方法求不出或者难以求出的解。假定冇一个函数y=f(x),方程f(x)=0在x=r处冇一个根,对于此根,先估计一个初始值Xo(可以是猜测的)。得到一个更好的估计值XI。为此f(X)=Xo处作该曲线切线,并将其延长与x轴相交。切线与x轴的交点通

6、常很接近r,我们用它作为下一个估计值XI,求岀XI后,用XI代替Xo。重复上述过程,在x二XI处作曲线的另一条切线,并将其延长至与x轴相交,用切线的x轴截距作为下一个近似值X2……这样继续下去,所得岀的这个x轴截距的序列通常迅速接近根「二.4«储的分析2.1牛顿迭代法的思想多数情况卜•是得不到一般数学方法所需的函数表达式,或难以找到原函数。线性方程组的求解更是让人望而生畏,往往因为计算机工作量太大而无法实施。对这些问题,都可以利用数值方法来求解,在计算机中实现的数值方法也称为数值算法。牛顿迭代法是数值分析屮一个重要的计算方法和思

7、想。迭代法的主要功能:计算方程时口J以比较快速。在工程实践中,有许多问题往往归结为求一元非线性方程的实根、求函数的定积分、求线性方程组的解等。而即使对于求一元方程实根这类问题,也只有在少数简单的情况下,才可以用传统的方法得到根的数学表达式。对于需要计算定积分的问题,便的计算出來结果但并不影响计算出來结果的精确度,运用于多种工业设计和数学设计方面。牛顿迭代法用到导数f'(x),但有时求导困难,如果导数用茅商(y2-yl)/(x2-xl)逼近,便是一种快速的截弦法。取两个x值作试探,判断f(x)是否副近于0,如果f(x)不理想,用经

8、过(xl,yl)、(x2,y2)的直线(截弦)代替f(x)求根,近似根x外推二xl-(x2-xl)*yl/(y2-yl),此x靠性会更好些。求根过程:是叠代过程,即由(xl,x2)->f(xl)、f(x2)、f(x中)或f(x外推)->(X1,X2),大写X1,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。