资源描述:
《时俊峰的论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、导数与微分在经济中的应用新疆师范大学数理信息学院数学与应用数学专业02—2班作者姓名:时俊峰指导教师:马昌秀2006年5月28日导数与微分在经济中的应用时俊峰摘要:新疆师范人学数理信息学院02-2班高等数学,尤其是微积分在经济中的重要性日益突出,而导数与微分又是微分学的两个重耍概念•本文就导数与微分在经济屮的广泛应用给予简单的介绍.关键词:弹性;边际成本;均衡;利润.弓I言:函数分为一元函数和多元函数,导数与微分也分为一元函数的导数、一元函数的微分和多元函数的偏导数、多元函数的全微分.木文先介绍一元函数的导数与微分在经济中
2、的应用,然后介绍多元函数的偏导数、全微分在经济中的应用.TheapplicationofderivativeanddifferentialinEconomicsAbstract:Highermathematics,theimportanceofinfinitesimalcalculusinEconomicsisevenprominentdaybyday.Thederivativeanddifferentialarctwoimportantconccptsofinfinitesimalcalculus.Thewideappl
3、icationofderivativeanddifferentialinEconomicswillbeintroducedinthearticle.Keywords:elasticity;marginalcost;equilibrium;profit.导数与微分在经济中的应用弓I言:函数分为一元函数和多元函数,导数与微分也分为一元函数的导数、一元函数的微分和多元函数的偏导数、多元函数的全微分.木文先介绍一元函数的导数与微分在经济中的应用,然后介绍多元函数的偏导数、全微分在经济中的应用.正文:1、弹性设函数y=f(x),当x
4、-x+/x时,y->y+Zy时,我们定义x的相对变动为:Zx/x,y的相对为Ny/y.因此我们得到:对一般的x,若f(x)二可导,则了纣(兀)、Ef(x)=lim')x*AxX/=/*(x)2称为函数y二f(x)的弹性函数.X弹性分为需求弹性、供给弹性等等。需求弹性乂分为需求价格弹性、需求收入弹性、需求交叉弹性等•下面就需求价格弹性举例其应用・例某厂家生产一种商品,其需求量对价格的弹性为E=2p2,而市场对该商品的最大需求量为1万件•求需求函数.解:由E二-“/血,所以叫=-2pdp,两端同时积分0p0+C,得&=必一"[
5、由于P=0吋,砌1,&=£一斥所以:需求函数为0=e~pl.2、边际成本边际成本即总成本的变化率。设c为总成本,c()为固定成本,q为可变成本,c'为边际成本,x为产虽,则有总成本函数c(x)=Co+q(Q,在函数可导情况下,边际成本为c,=cXx)・例某农场欲围一个面积为6加彳的矩形场地而修建围墙,其正面所用材料每米造价为元,其余三面每米5元,求边际成本,并求场地长,宽各为多少米时,所用材料费最少?解:设正面为x,则宽为设所用材料费为C,则C=10x+5x+-*2*5=15x+—,所以cQ)二15-2,XX12()令c(
6、x)=O,得x二2,有cn(x)=—9c"⑵=15>0,•T所以x=2是其最小值,于是得场地正墙血长为2m,宽为3m时,所用材料费最省.3、最大利润问题设总利润函数L=L(q)=R(q)-C(q),所以Lz(q)=Rr(q)-Cr(q).令Lq)=0,得RXq)=C(q),即边际收益等于边际成本,它是利润最人化的必要条件,充要条件为L"(q)<0,即R"(q)vC"(q)・如图所示0是利润最人化的必要条件,也是充分条件,⑺只是利润最人化的必要条件.例某工厂生产某产品,年产量为q(单位:百台),总成本c(单位:万元),其中
7、固定成本为2万元•每生产1百台,成本增加1万元。市场上每年可销售此种商品4百台,其总收益是年产量q的函数虑十⑷屮厂网m心l&g〉4问每年生产多少台?能使利润L=R(q)-C(q)最大.解:总成木C(q)是生产:£q的函数C(q)=2+q,则g)=R⑷-C⑷=:旷°力;2,0"16-g,g〉4对乙⑷求一阶导数,并令Z/(g)=O,得q=3,因此Z7(q)v0,所以c(q)=2.5为极大值也就是最大值.4、最小成本问题某超市每月销售某种商品a件,分若干批进货,每批进货手续费b元,设该商品均匀销售,且上批销售完即进下一批,即平均
8、库储量为批量每批进货量的一半,设每件库存费为c元,问商店应分几批进货,能使所用手续费与库存费总和最小?解:设分x批进货,则每批的进货量为乂,手续费为bx,库存费为—,x2%因此总费用p(x)二bx+牛•令px)=b-,令px)=0,得X二J看,由T*y>。,因此珂釜是阴的极小值也是最小值.由于竺,不