欢迎来到天天文库
浏览记录
ID:45880223
大小:147.50 KB
页数:7页
时间:2019-11-19
《(江苏专用)2019高考数学二轮复习 回扣7 解析几何试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、回扣7 解析几何1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:=(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:+=1(a,b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:
2、Ax+By+C=0(其中A,B不同时为0).2.直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1∥l2⇔k1=k2.(2)两直线垂直l1⊥l2⇔k1·k2=-1.提醒 当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离AB=.(2)点到直线的距离d=(其中点P(x0,y0),直线方程为Ax+By+C=0).(3)两平行线间的距离d=(其中两平行线方程分别为l1:Ax+By+
3、C1=0,l2:Ax+By+C2=0).提醒 应用两平行线间距离公式时,注意两平行线方程中x,y的系数应对应相等.4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法;(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.6.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线
4、方程联立得到的方程组进行判断.弦长公式:AB=
5、x1-x2
6、=
7、y1-y2
8、.7.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义PF1+PF2=2a(2a>F1F2)
9、PF1-PF2
10、=2a(2a11、x12、≤a,13、y14、≤b15、x16、≥ax≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0)轴长17、轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(018、x1-x219、=20、y1-y221、.9.解决范围、最值问题的常用解法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值22、域.10.定点问题的思路(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.11.求解定值问题的两大途径(1)→(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.12.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根23、据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为+=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论24、导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式,导致错解.6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.7.易误认两圆相切为两圆外切,忽视两圆内切的情况导致漏解.8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及
11、x
12、≤a,
13、y
14、≤b
15、x
16、≥ax≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0)轴长
17、轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(018、x1-x219、=20、y1-y221、.9.解决范围、最值问题的常用解法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值22、域.10.定点问题的思路(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.11.求解定值问题的两大途径(1)→(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.12.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根23、据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为+=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论24、导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式,导致错解.6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.7.易误认两圆相切为两圆外切,忽视两圆内切的情况导致漏解.8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及
18、x1-x2
19、=
20、y1-y2
21、.9.解决范围、最值问题的常用解法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值
22、域.10.定点问题的思路(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.11.求解定值问题的两大途径(1)→(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.12.解决存在性问题的解题步骤第一步:先假设存在,引入参变量,根
23、据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为+=1;再如,过定点P(x0,y0)的直线往往忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论
24、导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式,导致错解.6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.7.易误认两圆相切为两圆外切,忽视两圆内切的情况导致漏解.8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及
此文档下载收益归作者所有