欢迎来到天天文库
浏览记录
ID:45847686
大小:565.00 KB
页数:19页
时间:2019-11-18
《中考数学真题分类汇编第一期专题33弧长与扇形面积试题含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、弧长与扇形面积一、选择题1.(xx•山西•3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积是()A.4π-4B.4π-8C.8π-4D.8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形ABCD为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,2.(xx•山东淄博•4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )A.2πB.C.D.【考点】MN:弧长的计
2、算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC的长为=.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.【点评】本题考查了圆周角定理,弧长的计算,熟记弧长的公式是解题的关键. 3.(xx•四川成都•3分)如图,在中,,的半径为3,则图中阴影部分的面积是( )A.
3、 B. C. D. 【答案】C【考点】平行四边形的性质,扇形面积的计算【解析】【解答】解:∵平行四边形ABCD∴AB∥DC∴∠B+∠C=180°∴∠C=180°-60°=120°∴阴影部分的面积=120×32÷360=3故答案为:C【分析】根据平行四边形的性质及平行线的性质,可求出∠C的度数,再根据扇形的面积公式求解即可。4.(xx•山东滨
4、州•3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( )A.B.C.D.【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.5.(xx·山东威海·3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )A.18+36π
5、B.24+18πC.18+18πD.12+18π【分析】作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FE
6、H=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.6.(xx·台湾·分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )A.B.C.D.【分析】求出扇形的圆心角以及半径即可解决问题
7、;【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE==π.故选:C.【点评】本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.7.(xx•湖北黄石•3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为( )A.B.C.2πD.【分析】先计算圆心角为120°,根据弧长公式=,可得结果.【解答】解:连接OD
8、,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.【点评】本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.8.(xx·浙江宁波·4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为( )A.πB.πC.πD.π【考点】弧长公式【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式
此文档下载收益归作者所有