欢迎来到天天文库
浏览记录
ID:45743208
大小:183.00 KB
页数:7页
时间:2019-11-17
《17.1 勾股定理 教案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第17章勾股定理第1课时直角三角形三边的关系教学目标知识与技能:体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题;过程与方法:在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力;情感态度与价值观:通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。教学分析重点:探索和验证勾股定理过程。难点:通过面积计算探索勾股定理
2、。关键:关注性质的推导,主动探索,在实践中获得结论,并能正确地用语言表述性质。教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。2.自主探索,合作交流活动一:动脑想一想小明用一边长为的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为),你能知道斜边的长吗?③观察图形,并填空:⑴正方形
3、P的面积为,正方形Q的面积为,正方形R的面积为。⑵你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向)(图中每一小方格表示)⑴正方形P的面积为,7正方形Q的面积为,正方形R的面积为。⑵正方形P、Q、R的面积之间的关系是什么?⑶你会用直角三角形的边长表示正方形P、Q、R的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。试一试:①在方格图中,画出两条直角边分别为、的直角三角形,②再用刻度尺量出斜边长,③验证刚才的结论对
4、这个直角三角形是否成立?让学生自己总结,并用符号语言、文字语言表达勾股定理的内容。3.验证定理,拓展提高请你利用手中的直角三角形纸片,通过拼图来验证刚才大家的发现拼一拼:给出4个全等的直角三角形纸片,拼一拼,摆一摆,看看能否得到一个以C为一边的正方形?(介绍赵爽弦图和2002ICM标志)4.运用新知,体验成功例1.Rt△ABC中,=90°,AB=C,AC=b,BC=a⑴已知AC=6,BC=8,求AB.⑵已知=15,=9,求.(示范格式,提醒学生注意边的位置,关键“直角所对的边是斜边”)例2(补充)已知直角三角形的两边长分别为5和12,求第三边。分析:已知两边中较大边12可
5、能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3(P50例1)如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)5.反馈练习,巩固新知一、判断①直角三角形中,两边的平方和等于第三边的平方()②Rt△ABC中,,,则()二、1.在Rt△ABC中,,,,①若,,则.②若,,则.③若,,则,.2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是,则正方形A、B、C、D的面积和是。3.生活中的数学——你知道吗?7小红家新买
6、了一台29英寸(74cm)的电视机,小红量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他认为营业员搞错了,你同意他的想法吗?你能作出合理的解释吗?6.课堂小结:师生一起回顾本节知识,主要是让学生回忆学到了哪些知识和方法,教师最后再作补充。(1数学家大会所用标志。2勾股定理是宇宙语言。3利用勾股定理,可以解决“已知直角三角形的两边,求第三边”的问题)7.作业布置:P51,练习;P55,2、3教学反思:第2课时勾股定理的应用(1)教学内容教科书P25的内容教学目标1、会用勾股定理解决简单的实际问题。2、树立数形结合的思想。教学分析1、重点:勾股定理的应用。2、难点:
7、实际问题向数学问题的转化。3、难点的突破方法:数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性。4、例题的意图分析例1、2明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。教学过程一、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发
此文档下载收益归作者所有