资源描述:
《新课改瘦专用2020版高考数学一轮复习课时跟踪检测六十一古典概型与几何概型含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(六十一)古典概型与几何概型1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( )A. B.C.D.解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率为P===.故选B.2.(2019·贵阳模拟)某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这
2、三个项目都有人参加的概率为( )A.B.C.D.解析:选B 基本事件总数n=34=81,这三个项目都有人参加所包含的基本事件个数m=CA=36,故这三个项目都有人参加的概率为P===.3.(2019·广东五校联考)从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为( )A.B.C.D.解析:选C 从1~9这9个自然数中任取7个不同的数的取法共有C=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C=4种选法,故这7个数的平均数是5的概率为=,选C.4.(2019·成都外国语学校月考)《九章算术》中有如下问题:
3、今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A.B.C.1-D.1-解析:选D 直角三角形的斜边长为=17,设内切圆的半径为r,则8-r+15-r=17,解得r=3.∴内切圆的面积为πr2=9π,∴豆子落在内切圆外的概率P=1-=1-.5.(2019·长春质检)如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为(
4、 )A.B.C.D.解析:选A 设OA=3,则AB=3,AP=,由余弦定理可求得OP=,则∠AOP=30°,所以扇形AOC的面积为,又扇形AOB的面积为3π,从而所求概率为=.6.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A.2-B.4-C.4-D.4解析:选B 设圆的半径为r,根据扇形面积公式和三角形面积公式得阴影部分的面积S=24×=4πr2-6r2,圆的面积S′=πr2,所以此点取自树叶(即图中阴影部分)的概率为=4-,故选B.7.已知函数f(x)=
5、x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.B.C.D.解析:选D f′(x)=x2+2ax+b2,要使函数f(x)有两个极值点,则有Δ=(2a)2-4b2>0,即a2>b2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.满足a2>b2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(
6、3,2),所以所求事件的概率为=.8.(2019·安阳模拟)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是( )A.-πB.1-πC.D.解析:选B 如图,正△ABC的边长为a,分别以它的三个顶点为圆心,为半径,在△ABC内部画圆弧,得到三个扇形,则点P在这三个扇形外,因此所求概率为=1-π,故选B.9.(2019·石家庄毕业班摸底)一个三位数,个位、十位、百位上的数字依次为x,y,z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”
7、的概率为( )A.B.C.D.解析:选B 从集合{1,2,3,4}中取出三个不相同的数组成一个三位数共有24个结果:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,其中是“凸数”的是132,142,143,231,241,243,341,342,共8个结果,所以这个三位数是“凸数”的概率为=,故选B.10.(2018·全国卷Ⅰ)如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径
8、分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记