欢迎来到天天文库
浏览记录
ID:45631323
大小:358.30 KB
页数:7页
时间:2019-11-15
《2019-2020年高考数学总复习第七章立体几何41直线平面平行的判定和性质课时作业文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学总复习第七章立体几何41直线平面平行的判定和性质课时作业文一、选择题1.(xx·济南一模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β.其中真命题的个数为( )A.1B.2C.3D.4解析:对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内
2、,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.答案:A2.(xx·银川一模)如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B′、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为( )A.K B.HC.GD.B′解析:取A′C′的中点M,连接EM、MK、KF、EF,则EM綊CC′綊KF,得EFKM为平行四边形,若P=K,则AA′∥B
3、B′∥CC′∥KF,故与平面PEF平行的棱超过2条;HB′∥MK⇒HB′∥EF,若P=H或P=B′,则平面PEF与平面EFB′A′为同一平面,与平面EFB′A′平行的棱只有AB,不满足条件,故选C.答案:C3.(xx·湖南长沙二模)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析:对于A,平行于同一平面的两条直线可能相交,可能平行,也可能异面,故
4、A不正确;对于B,m∥n,m∥α,则n∥α或n⊂α,故B不正确;对于C,利用垂直于同一直线的两个平面平行,可知C正确;对于D,因为垂直于同一平面的两个平面的位置关系是相交或平行,故D不正确.故选C.答案:C4.(xx·浙江金丽衢十二校联考)已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于点A、C,过点P的直线n与α、β分别交于点B、D,且PA=6,AC=9,PD=8,则BD的长为( )A.16B.24或C.14D.20解析:设BD=x,由α∥β⇒AB∥CD⇒△PAB∽△PC
5、D⇒=.①当点P在两平面之间时,如图1,=,∴x=24;②当点P在两平面外侧时,如图2,=,∴x=.答案:B5.(xx·长春一模)已知四棱锥P-ABCD的底面四边形ABCD的对边互不平行,现用一平面α截此四棱锥,且要使截面是平行四边形,则这样的平面α( )A.有且只有一个B.有四个C.有无数个D.不存在解析:易知,平面PAD与平面PBC相交,平面PAB与平面PCD相交,设相交平面的交线分别为m,n,由m,n决定的平面为β,作α与β平行且与四棱锥的四条侧棱相交,交点分别为A1,B1,C1,D1,
6、则由面面平行的性质定理得,A1D1∥m∥B1C1,A1B1∥n∥D1C1,从而得截面必为平行四边形.由于平面α可以上下平移,故这样的平面α有无数个.故选C.答案:C6.(xx·新课标全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交.B项,作如图②所示的辅助线,
7、则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ,C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ.D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.故选A.答案:A二、填空题7.已知平面α∥平面β,P是α,β外一点,过P点的两条直线AC,BD分别交α于A,B,交β于C,D,且PA=6,AC=9,A
8、B=8,则CD的长为________.解析:若P在α,β的同侧,由于平面α∥平面β,故AB∥CD,则==,可求得CD=20;若P在α,β之间,则==,可求得CD=4.答案:20或48.在棱长为2的正方体ABCD-A1B1C1D1中,P是A1B1的中点,过点A1作与截面PBC1平行的截面,所得截面的面积是________.解析:如图,取AB,C1D1的中点E,F,连接A1E,A1F,EF,则平面A1EF∥平面BPC1.在△A1EF中,A1F=A1E=,EF=2,S△A1EF=×2×=,从而所得截面
此文档下载收益归作者所有