高中数学新体系难点03__运用向量法解题

高中数学新体系难点03__运用向量法解题

ID:45613362

大小:74.24 KB

页数:8页

时间:2019-11-15

高中数学新体系难点03__运用向量法解题_第1页
高中数学新体系难点03__运用向量法解题_第2页
高中数学新体系难点03__运用向量法解题_第3页
高中数学新体系难点03__运用向量法解题_第4页
高中数学新体系难点03__运用向量法解题_第5页
资源描述:

《高中数学新体系难点03__运用向量法解题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、难点3:运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,木节内容主要是帮助考生运用向量法来分析,解决一些相关问题.•难点磁场三角形A3C中,A(5,-1),B(_1,7),C(1,2),求:(1)BC边上的中线仙的长;(2)ZCAB的平分线AD的长;(3)cosABC的值.•案例探究[例1]如图,已知平行六而体ABCD-A^C.D,的底而ABCD是菱形,且上==(1)求证:GC丄BQ・(2)当泮的值为多少时,能使「匕丄平面C.BD?请给

2、出证明.命题意图:木题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体儿何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何屮的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:木题难点是考生理不清题H中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中捉供的角与向量夹角的区别与联系.技巧与方法:利用。丄boa・b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.⑴证明:设CD=a,CB=b,U=c,依题意,a=b,CD,CB,CC}屮两

3、两所成夹角为&,丁是BD=CD-DB=a-b,CCj•BD=c^a-=c•a-c•b=c•acos。—c

4、*

5、/?

6、cos^=0,C,C丄BD.(2)解:若使AC丄平面C、BD,只须证AC】丄BD,£C丄£>G,由帝c[d=(ca+aa1)cd-cc1)=(a+b+c)・(a-c)=f+Q・b-b・c-J=a2-c2+b\acos0-b

7、c

8、•cos0=0得当a=c时,£C丄DC】,同理可证当

9、a

10、=

11、c

12、时,AXC1BD,cqAC丄平面C】BD・[例2]如图,直三棱柱ABC-A^C^

13、,底面AABC中,CA=CB=1,ZBCA=90,人儿=2,M,N分别是人耳、A/的中点.(1)求丽的长;(2)求cos丽•西的值;⑶求证:4/丄GM.命题意图:本题主要考查考生运用向量法中的处标运算的方法來解决立休几何问题.属★级题日・知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-兀比,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面兀Oy内的A,B,C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图

14、,以C为原点建立空间直角坐标系0-兀必•依题意得:B(0丄0),N(1,0,1).•.丽=J(1_O)2+(0_1)2+(1_O)2=V3・(2)解:依题意得:£(1,0,2)«(0,0,0),冋(0丄2)・甌=(1,_1,2)両=(0,1,2)B^-C^=lx0+(-l)xl+2x2=3

15、BA^

16、=J(l-0)2+(0-l)2+(2-0)2=^6V30i(rICBX1=J(0—0)2+(1—0)2+(2—0)2=V5cos==3BCX\CB}IV6-V5(3)证明:依题意得:C]

17、(O,O,2),M-,-,2C]M=—0),£3=(-1,1,-2)122丿22——11——>・•・=(-l)x-+lx-+(-2)x0=0,.\B丄GMy:.£3丄・•锦囊妙计1.解决关于向屋问题时,一要善于运用向屋的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识•二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2•向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题屮•常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解

18、空间两条直线的夹角和两点间距离的问题.3.用空间向虽解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识來解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用己知条件转化成的向量直接表示?(3)所需要的向量若不能直接用己知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向屋进行运算,才能得到需要的结论?•歼灭难点训练一、选择题1.设A,B,C,D四点坐标依次是(-1,0),(0,2)

19、,(4,3),(3,1),则四边形ABCD为()A正方形B.矩形C.菱形D平行四边形2.已知△ABC中,AB=a,AC=b,axb

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。