难点3 运用向量法解题难点突破专题辅导三

难点3 运用向量法解题难点突破专题辅导三

ID:15312661

大小:161.85 KB

页数:3页

时间:2018-08-02

难点3  运用向量法解题难点突破专题辅导三_第1页
难点3  运用向量法解题难点突破专题辅导三_第2页
难点3  运用向量法解题难点突破专题辅导三_第3页
资源描述:

《难点3 运用向量法解题难点突破专题辅导三》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、本资2014年高考数学难点突破专题辅导三难点3运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:

2、C1C⊥BD.(2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos<>的值;(3)求证:A1B⊥C1M.●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问

3、题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练一、

4、选择题1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为()A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC中,=a,=b,a·b<0,S△ABC=,

5、a

6、=3,

7、b

8、=5,则a与b的夹角是()A.30°B.-150°C.150°D.30°或150°二、填空题3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰R

9、t△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16cm,AC=17cm,则CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设=a,=b,=c,=λa,(0<λ<1),=μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列.(1)点P的轨迹是什么

10、曲线?(2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。